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1. Introduction

In 1947, E. Artin introduced the study of braids with his pioneering paper called Theory
of Braids (see [1]), which is directly related to knots and links theory. Although braids,
links and knots had already been discussed earlier, Artin showed two important results for
the theory: the presentation and representation theorems for the braid group on the disk,
namely Bn, also known as the Artin Braid Group. For our purposes here, we focus on the
first result: a presentation of a group is a way to represent a group by generators and rela-
tions. The braid group is a group of equivalence classes, where the equivalence relation is
isotopy (or, more formally, ambient isotopy). However, in the same paper Artin proposed
the idea of homotopy braids: essentially, it is the same set divided into equivalence classes
using the equivalence relation of homotopy. The operation (concatenation) remains the
same among braids. Accordingly, he posed the following questions: would the homotopy
braids on the disk have the same properties, group structure and presentation as braid
groups? Otherwise, what are its differences?

Goldsmith [5] answered all these questions: in fact, she proved that the group
structures are different, making it explicit when certain types of braids are not trivial up to
isotopy but trivial up to homotopy, called link homotopically trivial braids, namely, Hn.
Furthermore, she provided a explicit description of Hn and a presentation for homotopy
braid groups on the disk, denoted by B̂n, which is the quotient of Bn by Hn. Homotopy
has been discussed since the beginning of the formalization of the studies of braid groups
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presented by Artin. However, homotopy braid theory was formalized by Milnor some
years after Artin’s seminal paper in [11] and it has been extended with the works [8, 9,
14]. Moreover, there is still a slight difference between the concepts of string links given
in [11, 14] and of homotopy braids given in [5]: string links are pure braids, either on
the disk or on surfaces, with the monotonicity requirement relaxed, whereas homotopy
braids are braids on the disk (not necessarily pure) with the monotonicity requirement
relaxed. Consequently, we see that the most recent works are restricted to the pure case
and, therefore, was reasonable to inquire about the general case, as provided in [12],
namely, B̂n(M), the group of generalized string links over surfaces. Still in [12], was
provided a exact sequence relating the braid group over surfaces, Bn(M), described in
[6] and the generalized string links over surfaces, B̂n(M), giving us a important tool for
the famous open question about the left orderability of Bn(M) [3, 7].

In [12] we formalize the definitons: generalized string links over surfaces (ori-
entable different from the sphere) are homotopy braids over surfaces with non trivial per-
mutation induced by its strands. For the particular case when the permutation induced by
the strands of a generalized string link is trivial, we call simply string links over surfaces
[14, 12].

When we put exact sequences and presentations (finitely) of groups together,
it is possible to obtain precious results in orderability theory for braids as we see in
[3, 14, 13, 12]. From this notion and considering the fact generalized string links is a
recently object to be explored (although it is already a structure used in other areas be-
yond mathematics[10]), we present a new exact sequence, relating the normal subgroup
of B̂n(M), called the group of string links over surfaces (pure), namely, P̂Bn(M), P̂Bn

and the direct product of fundamental group of M , namely, π1(M)n, extending the exact
sequence given in [4].

This paper is organized as follows: in Section 2 we state results about generalized
string links over surfaces that will be useful for our purposes including giving details
about the structures mentioned in this section. In Section 3 we provide the main result of
this paper, the exact sequence and the proof of its well definition, extending [4].

2. Homotopy Generalized String Links

2.1. Braids over Surfaces

Definition 2.1. [6, p.431] Let M be a closed surface, not necessarily orientable, and let
P = {P1, . . . , Pn} be a set of n distinct points of M . A geometric braid over M based at
P is an n-tuple γ = (γ1, . . . , γn) of paths, γi : [0, 1] →M , such that:

(1) γi(0) = Pi, for all i = 1, . . . , n,
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(2) γi(1) ∈ P , for all i = 1, . . . , n,

(3) {γ1(t), . . . , γn(t)} are n distinct points of M , for all t ∈ [0, 1].

For all i = 1, . . . , n, we will call γi the i-th strands (or strings) of γ.

Figure 1. A braid ”through the wall” β over the 2-dimensional torus.

We say two geometric braids β and α are isotopic if there exists an ambient isotopy
which deforms one to the other, with endpoints fixed during the deformation process. The
set of all equivalence classes of geometric braids on n-strands on the surface M forms a
group called the braid group on n strings on a surface M , namely Bn(M), equipped with
the operation (product) called concatenation. The inverse of each braid γ is given by the
mirror reflection of γ. If the surface M is the disk D, then Bn(D) is the classical Artin
braid group, namely, Bn. [1, 2]

Figure 2. Two isotopic braids.
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Let PBn(M) be the pure braid group over M , which is a normal subgroup of
Bn(M), defined by braids which has the trivial permutation induced by their strands,
given in [6].

Theorem 2.2. [6, Theorem 4.2] If M is a closed, connected and orientable surface of
genus g ≥ 1 (different from the sphere), then PBn(M) admits the following presentation:

Generators: {ai,r; 1 ≤ i ≤ n, 1 ≤ r ≤ 2g} ∪ {Tj,k; 1 ≤ j < k ≤ n}.

Relations:

(PR1) a−1
n,1a

−1
n,2 · · · a

−1
n,2gan,1an,2 · · · an,2g =

n−1∏
i=1

T−1
i,n−1Ti,n;

(PR2) ai,rAj,s = Aj,sai,r, 1 ≤ i < j ≤ n; 1 ≤ r, s ≤ 2g; r ̸= s;

(PR3) (ai,1 · · · ai,r)Aj,r(a−1
i,r · · · a

−1
i,1 )A

−1
j,r = Ti,jT

−1
i,j−1, 1 ≤ i < j ≤ n; 1 ≤ r ≤ 2g;

(PR4) Ti,jTk,l = Tk,lTi,j , 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l ≤ j ≤ n;

(PR5) Tk,lTi,jT−1
k,l = Ti,k−1T

−1
i,k Ti,jT

−1
i,l Ti,kT

−1
i,k−1Ti,l, 1 ≤ i < k ≤ j < l ≤ n;

(PR6) ai,rTj,k = Tj,kai,r, 1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n; 1 ≤ r ≤ 2g;

(PR7) ai,r(a−1
j,2g · · · a

−1
j,1Tj,kaj,2g · · · aj,1) = (a−1

j,2g · · · a
−1
j,1Tj,kaj,2g · · · aj,1)ai,r, 1 ≤ j < i ≤ k ≤

n;

(PR8) Tj,n =

(
j−1∏
i=1

a−1
i,2g · · · a

−1
i,1Ti,j−1T

−1
i,j ai,1 · · · ai,2g

)
aj,1 · · · aj,2ga−1

j,1 · · · a
−1
j,2g.

Where

Aj,s = aj,1 · · · aj,s−1a
−1
j,s+1 · · · a−1

j,2g,

Ti,j = σiσi+1 · · ·σj−2σ
2
j−1σj−2 · · · σi+1σi.

Figure 3. Generators of PBn(M).
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Theorem 2.3. [6, Theorem 2.1] If M is a closed, orientable surface of genus g ≥ 1, then
Bn(M) admits the following presentation:

Generators: σ1, . . . , σn−1, a1,1, . . . , a1,2g.

Relations:

(R1) σiσj = σjσi, |i− j| ≥ 2;

(R2) σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2;

(R3) a1,1 · · · a1,2ga−1
1,1 · · · a−1

1,2g = σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1,

(R4) a1,rA2,s = A2,sa1,r, 1 ≤ r, s ≤ 2g; r ̸= s;

(R5) (a1,1 · · · a1,r)A2,r = σ2
1A2,r(a1,1 · · · a1,r), 1 ≤ r ≤ 2g;

(R6) a1,rσi = σia1,r, 1 ≤ r ≤ 2g; i ≥ 2.

If M is the unit disk, the presentation of Theorem 2.3 is reduced to Artin´s pre-
sentations given in [1].

Figure 4. Generators of Bn(M).

The relevance of the Theorems 2.2 and 2.3 above, is about knowing the charac-
terization given in [6] of the structures of the braid group over surfaces and of the pure
braid group over surfaces, namely, Bn(M) and PBn(M), since they are needed to con-
struct the generalized string links over surfaces, namely, B̂n(M) and P̂Bn(M). These
constructions will be present in the next section.

2.2. Generalized String Links over Surfaces

Let us set I = Ii = [0, 1], for all i = 1, 2, . . . , n.

Definition 2.4. [12, Definition 3.1] A generalized string link σ on n strands on a surface
M is a smooth or piecewise linear proper embedding σ :

∐n
i=1 Ii →M×I, which fulfills

the two following conditions:

(i) σ|(Ii(0)) = (Pi, 0),
(ii) σ|(Ii(1)) ∈ {(P1, 1), . . . , (Pn, 1)},
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where Ii(t) = t ∈ Ii, for all t and for all i = 1, . . . , n.

Figure 5. A generalized string link σ over the 2-dimensional torus.

Here, we orient the strands downwards from M × {0} to M × {1}. Besides, an
ambient isotopy between generalized string links σ and σ′ is an orientation-preserving
diffeomorphism of M × I which maps σ onto σ′, keeping the boundary M × {0, 1}
point-wise fixed and is isotopic to the identity, relative to M × {0, 1}.

When σ|(Ii(0)) = (Pi, 1), we just obtain a string link, i.e., a string link is a pure
generalized string link described in [14]. When the surface in question is the disk D, we
have the homotopy braids described in [5].

Definition 2.5. [8] Two generalized string links σ and σ′ are link-homotopic if there is a
homotopy of the strings in M × I , fixing M ×{0, 1} and deforming σ to σ′ , such that the
images of different strings remain disjoint during the deformation. During the course of
deformation, each individual strand is allowed to pass through itself but not through other
strands.

Equivalently:

Definition 2.6. [8, 11, 9] We say link-homotopy is an equivalence relation on generalized
string links that is generated by a finite sequence of ambient isotopies of M × I fixing
M × {0, 1}, and local crossing changes of arcs from the same strand of a generalized
string link called link-homotopy moves.
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Figure 6. A crossing change.

The property of the local crossing changes consists in considering the undercross-
ing and the overcrossing as the same crossing (in the same strand), as shown in Figure 6,
i.e, a crossing change for generalized string links remains the same as defined for string
links.

Figure 7. A generalized string link σ link homotopic to a braid up to a crossing
change moviment.

Define Hn(M) the subgroup of PBn(M), defined by of all pure braids in
PBn(M) which are link-homotopic to the trivial braid. This set is called the set of the
link-homotopically trivial braids. In symbols:

Hn(M) = {β ∈ PBn(M); β ∼ 1},

where ∼ denotes the link-homotopy equivalence relation.

Also, let ti,j be the product of braids given by the following:

ti,j = σiσi+1 · · · σj−2σ
2
j−1σ

−1
j−2 · · ·σ−1

i+1σ
−1
i , 1 ≤ i < j ≤ n

.
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Figure 8. The geometrical representation of ti,j .

Now, setting gh = hgh−1, we have the following:

Proposition 2.7. [12, p.6]Hn(M) is the smallest normal subgroup of PBn(M) generated
by the commutator set {[ti,j, thi,j], 1 ≤ i < j ≤ n, h ∈ F(2g + n− i)}. In symbols:

Hn(M) = ⟨{[ti,j, thi,j], 1 ≤ i < j ≤ n, h ∈ F(2g + n− i)}⟩N ,

where ⟨ ⟩N denotes the normal closure and F(2g + n − i) = π1(M \ Pn−i, Pi), with
Pn−i = {Pi+1, Pi+2, . . . , Pn}, i = 1, 2, . . . , n− 1.

Figure 9. A particular case of [ti,j , thi,j ] [14].
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Proposition 2.8. [14, Proposition 3.9] Under concatenation, P̂Bn(M) is a group iso-
morphic to the quotient of the pure braid group PBn(M) by the subgroup of link-
homotopically trivial braids Hn(M):

P̂Bn(M) =
PBn(M)

Hn(M)
.

Theorem 2.9. [14, Theorem 6.3] Let M be a closed, compact, connected and orientable
surface of genus g ≥ 1. The group of homotopy string links P̂Bn(M) admits the presen-
tation:

Generators: {ai,r; 1 ≤ i ≤ n; 1 ≤ r ≤ 2g} ∪ {tj,k; 1 ≤ j < k ≤ n}.
Relations:
(LH1) [ti,j , thi,j ] = 1, h ∈ F(2g+n− i);

(PR1) a−1
n,1a

−1
n,2 · · · a

−1
n,2gan,1an,2 · · · an,2g =

n−1∏
i=1

T−1
i,n−1Ti,n;

(PR2) ai,rAj,s = Aj,sai,r, 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2g; 1 ≤ s ≤ 2g − 1; r ̸= s;

(PR3) (ai,1 · · · ai,r)Aj,r(a−1
i,r · · · a

−1
i,1 )A

−1
j,r = Ti,jT

−1
i,j−1, 1 ≤ i < j ≤ n, 1 ≤ r ≤ 2g−1;

(PR4) Ti,jTk,l = Tk,lTi,j , 1 ≤ i < j < k < l ≤ n or 1 ≤ i < k < l ≤ j ≤ n;

(PR5) Tk,lTi,jT−1
k,l = Ti,k−1T

−1
i,k Ti,jT

−1
i,l Ti,kT

−1
i,k−1Ti,l, 1 ≤ i < k ≤ j < l ≤ n;

(PR6) ai,rTj,k = Tj,kai,r, 1 ≤ i < j < k ≤ n or 1 ≤ j < k < i ≤ n, 1 ≤ r ≤ 2g;

(PR7) ai,r(a−1
j,2g · · · a

−1
j,1Tj,kaj,2g · · · aj,1) = (a−1

j,2g · · · a
−1
j,1Tj,kaj,2g · · · aj,1)ai,r, 1 ≤ j <

i ≤ k ≤ n;

(PR8) Tj,n =

(
j−1∏
i=1

a−1
i,2g · · · a

−1
i,1Ti,j−1T

−1
i,j ai,1 · · · ai,2g

)
aj,1 · · · aj,2ga−1

j,1 · · · a
−1
j,2g.

Where

Aj,s = aj,1 · · · aj,s−1a
−1
j,s+1 · · · a−1

j,2g,

ti,j = σiσi+1 · · ·σj−2σ
2
j−1σ

−1
j−2 · · ·σ−1

i+1σ
−1
i , 1 ≤ i < j ≤ n,

Ti,j = ti,j · · · ti,i+1.

Figure 10. Generators of P̂Bn(M).
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Proposition 2.10. [12, Theorem 3.7] Under concatenation B̂n(M) is a group isomorphic
to the quotient of the pure braid group Bn(M) by the subgroup of link-homotopically
trivial braids Hn(M):

B̂n(M) =
Bn(M)

Hn(M)
.

Theorem 2.11. [12, Theorem 3.9] Let M be a closed, orientable surface of genus g ≥ 1.
The group of link-homotopy classes of generalized string links over M , namely B̂n(M),
admits the following presentation:

Generators: {a1,1, . . . , a1,2g} ∪ {σ1, . . . , σn−1};
Relations:

(LH) [t1,j, t
h
1,j] = 1 h ∈ F(2g + n− 1);

(R1) σiσj = σjσi |i− j| ≥ 2;
(R2) σiσi+1σi = σi+1σiσi+1 1 ≤ i ≤ n− 2;
(R3) a1,1 · · · a1,2ga−1

1,1 · · · a−1
1,2g = σ1 · · ·σn−2σ

2
n−1σn−2 · · ·σ1

(R4) a1,rA2,s = A2,sa1,r 1 ≤ r ≤ 2g 1 ≤ s ≤ 2g − 1, r ̸= s;
(R5) (a1,1 · · · a1,r)A2,r = σ2

1A2,r(a1,1 · · · a1,r) 1 ≤ r ≤ 2g − 1;
(R6) a1,rσi = σia1,r 1 ≤ r ≤ 2g; i ≥ 2.

Where:

t1,j = σ1 · · ·σj−2σ
2
j−1σ

−1
j−2 · · · σ−1

1 , j = 2, . . . , n,

A2,s = σ−1
1 (a1,1 · · · a1,s−1a

−1
1,s+1 · · · a−1

1,2g)σ
−1
1 , s = 1, . . . , 2g − 1.

Figure 11. Generators of B̂n(M).

Let us remind the following homomorphism defined in [13]:

i : P̂Bn(M) → B̂n(M)

β 7→ β, (⋆)

which takes the string link β in P̂Bn(M) to itself in B̂n(M).
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Corollary 2.12. [12, p.18] Under the conditions above, we have the well defined short
exact sequence:

1 // Hn(M) i // Bn(M)
ψ // B̂n(M) // 1 ,

where i is the restriction of the inclusion given in (⋆).

Proposition 2.13. [12, Proposition 3.8] P̂Bn(M) is a normal subgroup of B̂n(M). More-
over, under the homomorphism ψ defined previously, we have the well defined short exact
sequence:

1 // P̂Bn(M) i // B̂n(M)
ψ // Σn

// 1 ,

where i homomorphism and Σn denotes the symmetric group on n letters.

From now on, letM be a closed, connected and orientable surface of genus g ≥ 1.
Given a string link σ̂ = [(σ1, . . . , σn)] over M in P̂Bn(M), we can consider, for all
i = 1, . . . , n the loop µi in M constructed as follows: take the i-th string σi (which is a
path in M × [0, 1]) and call as µi its projection over the first coordinate (i.e., over M ).
Since σ̂ ∈ P̂Bn(M), µi is a loop inM based at Pi, for all i = 1, . . . , nwhich represents an
element of π1(M,Pi) ≃ π1(M). This defines an epimorphism θ̂n : P̂Bn(M) → π1(M)n

which sends σ̂ = [(σ1, . . . , σn)] to µ = (µ1, . . . , µn).

Lemma 2.14. [13, Lemma 3.1] Under the conditions above, θ̂n is a well defined surjective
homomorphism.

3. An Exact Sequence for Link-Homotopy Braid Groups

In this section we extend the result provided by Charles H. Goldberg in [4, Theorem 1]
for generalizing string links over surfaces. To prove this result, we will use as a tool the
surjective homomorphism θ̂n of Lemma 2.14.

3.1. Main Theorem

Let us consider a closed, connected and orientable surface M , of genus g ≥ 1, i.e., M
is different of the sphere. Let P = {P1, P2, . . . , Pn} be a set of n distinct fixed points
chosen arbitrarily in the interior of M .Now, let us define the following map:

f̂n : P̂Bn(D) → P̂Bn(M)

given by f̂n(β̂) = β̂, for each β̂ in P̂Bn(D), where D denotes the unit disk. Also, we have
θ̂n : P̂Bn(M) → π1(M)n given by θ̂n(α̂) = θ̂n([(α1, . . . , αn)]) = (µ1, . . . , µn), where
each µi is the strand αi of α̂ viewed as a loop in the fundamental group ofM , i = 1, . . . , n,
for all α̂ = [(α1, . . . , αn)] in P̂Bn(M). By Lemma 2.14, θ̂n is a well defined surjective
homomorphism.
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Theorem 3.1. If M is a closed, connected and orientable surface, of genus g ≥ 1, then
in the following sequence of groups (not necessarily abelian):

1 // P̂Bn(D)
f̂n // P̂Bn(M)

θ̂n // π1(M)n // 1 ,

the kernel of each homomorphism is equal to the normal closure of the image of the
previous homomorphism in the sequence, i.e., ker(θ̂n) = ⟨Imf̂n⟩N .

3.2. The well definition of f̂n and proof of Theorem 3.1

Lemma 3.2. The map f̂n is a well defined injective homomorphism.

Proof. Recall the inclusion homomorphism fn : PBn(D) → PBn(M) defined by Bir-
man in [2]. Now, let β be an element link-homotopically trivial in PBn(D). Clearly,
fn(β) = β is a link-homotopically trivial element of PBn(M), i.e., fn(Hn(D)) ⊆
Hn(M). Thus, f̂n is the well defined homomorphism induced by the injection fn. Now,
we need to prove that f̂n is injective. Indeed, let β̂ ∈ P̂Bn(D) such that f̂n(β̂) = 1,
where 1 denotes the identity in P̂Bn(M), i.e., 1 = Hn(M). So we have β̂ ∈ P̂Bn(D)
and β̂ ∈ Hn(M). By Goldsmith in [5], we have β̂ ∈ Hn(D). Therefore, ker f̂n = Hn(D),
i.e., f̂n is injective.

Let us consider the following diagram:

1 // PBn(D)
p1
��

fn // PBn(M)

p2
��

θn // π1(M)n

id
��

// 1

1 // P̂Bn(D)
f̂n // P̂Bn(M)

θ̂n // π1(M)n // 1

(1)

where p1, p2 are the respective projections and id is the identity in π1(M). We claim that
this diagram is commutative. Indeed, ∀β ∈ PBn(D),

f̂n ◦ p1(β) = f̂n([β]) = [β] and p2 ◦ fn(β) = p2(β) = [β],

that is, f̂n ◦ p1 = p2 ◦ fn. Moreover, ∀α ∈ PBn(M),

θ̂n ◦ p2(α) = θ̂n([α]) = (µ1, . . . , µn) and id ◦ θn(α) = id(µ1, . . . , µn) = (µ1, . . . , µn),

i.e., θ̂n ◦ p2 = id ◦ θn.

Lemma 3.3. Im(f̂n) ⊆ ker(θ̂n).
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Proof. Let α̂ ∈ Im(f̂n). So, there is an element β̂ ∈ P̂Bn(D) such that α̂ = f̂n(β̂). Thus,
θ̂n ◦ f̂n(β̂) = θ̂n(α̂). Since β̂ is in P̂Bn(D) and p1 is surjective, there is β in PBn(D) such
that p1(β) = β̂. So, θ̂n ◦ f̂n ◦ p1(β) = θ̂n(α̂), which implies, θ̂n ◦ p2 ◦ fn(β) = θ̂n(α̂),
i.e., θn ◦ fn(β) = θ̂n(α̂). By [4], we have Im(fn) ⊆ ker(θn), i.e., θ̂n(α̂) = 1 and then,
α̂ ∈ ker(θ̂n).

Lemma 3.4. ker(θ̂n) ⊆ ⟨Im(f̂n)⟩N .

Proof. Let γ̂ be an element in ker(θ̂n). Thus, γ̂ ∈ P̂Bn(M) and θ̂n(γ̂) = 1. By Proposi-
tion 2.8, each string link is link homotopic to a pure braid. Let γ ∈ PBn(M) be such pure
braid. So, θn(γ) = 1, where 1 denotes the identity in π1(M)n. By [4, Theorem 1], we
have γ =

∏
k αkβkα

−1
k , with αk ∈ PBn(M), βk ∈ Im(fn), i.e., βk = fn(γk), for some

γk ∈ PBn(D) with p1(γk) = γ̂k, and then, f̂n ◦ p1(γk) = f̂n(γ̂k). Since the diagram (1)
commutes,

f̂n(γ̂k) = f̂n ◦ p1(γk) = p2 ◦ fn(γk) = p2(βk) = β̂k,

i.e., β̂k ∈ Im(f̂n). Therefore,

γ̂ = p2(γ) = p2

(∏
k

αkβkα
−1
k

)
=
∏
k

p2(αk)p2(βk)p2(αk)
−1 =

∏
k

α̂kβ̂kα̂k
−1,

with α̂k ∈ P̂Bn(M), β̂k ∈ Im(f̂n).

Proof. Proof of Theorem 3.1: Follows from Lemmas 3.2, 3.3 and 3.4.
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