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Abstract. In this expository article we review some results about the
fundamental group of a compact negatively curved manifold. In particular, a
theorem of Gusevskij, see [7], it states that the fundamental group of a compact
negatively curved manifold does not belong to C, where C is the smallest class
of groups that contains all amenable groups and is closed under free products
and finite extensions. The class C is quite natural and was introduced for the
first time in [8].
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1. Introduction

Yau and Schoen [11] proposed to characterize the groups that appear as the fundamental
group of some compact manifold with negative sectional curvature. The fundamental
group π1pMq of a compact negatively curved manifold has been well studied over the
years, for example, Milnor [9] showed that such group must have exponential growth,
Preissmann [10] and Beyers [2] asserted that any of its abelian or solvable subgroup
must be infinite cyclic. By the Hadamard theorem one knows that the manifold is a
Kpπ1pMq, 1q space which imposes certain conditions on the group, e.g., the group must
be torsion free. Eberlein [4] also showed that these groups contain a nontrivial free
subgroup. There are some relevant informations that is still unknown, for example, there
exist a conjecture that says, for a compact negatively curved M of even dimension n,
the Euler characteristic χpMq is negative for n ” 2 mod 4 and χpMq ą 0 for n ” 0

mod 4.

Hirsch and Thurston [8] observed that if this conjecture is true, then the
fundamental group of a compact negatively curved manifold does not belongs to the
class C, where C denotes the smallest class of groups which contains all amenable groups
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satisfying: if G and H are two groups in C then their free product, G ˚H , is also in C, and
if a group G P C has finite index in K then K also belongs to C. In particular, G P C if G
is solvable, free or of subexponential growth. The authors also remarked that this can be
proved directly. Based on this, Chen proved in [3] that if π1pMq P C then π1pMq must be
a free group. Therefore, Gusevskij [7] proves that π1pMq can never belong to C. In these
notes we give a direct proof that the fundamental group of a compact negatively curved
manifold never belongs to C, by observing that π1pMq has no finite index free subgroups.

By Preissmman’s Theorem we know that for a compact negatively curved M,

π1pMq does not belong to the class of all abelian groups, see [10, Theorem 10]. Beyers
[2] ensures that π1pMq does not belong to the class of all solvable groups, while by Avez’s
Theorem 3.3, π1pMq does not belong the class of all amenable groups. Note that, the class
of all abelian groups is a proper class of all solvable groups and the class of all solvable
groups is a proper class of all amenable groups, and that class C contains the class of
all amenable groups, thus π1pMq R C can be interpreted as a natural generalization of
previous results.

2. Preliminaries

In this section, we introduce some notions on geometric group theory, which arise
when one looks at groups as metric spaces. The key notion in this regard is that of a
quasi-isometry, namely, an equivalence relation among metric spaces that equates spaces
which look the same on the large scale 2.1.

Definition 2.1. Let X, Y be metric spaces. An aplication f : X Ñ Y is an
pL,Cq-quasi-isometric embedding if

L´1dXpx, x1
q ´ C ď dY pfpxq, fpx1

qq ď LdXpx, x1
q ` C

for all x, x1 P X.

An (L,Cq-quasi-isometric embedding is called an pL,Cq-quasi-isometry, if it
admits a quasi-inverse map pf : Y Ñ X which is also an pL,Cq-quasi-isometric
embedding, that is, an pL,Cq-quasi-isometry satisfying:

dXp pffpxq, xq ď C, dY pf pfpyq, yq ď C

for all x P X, y P Y.

Definition 2.2. Two metric spaces X, Y are quasi-isometric if there exists a
quasi-isometry X Ñ Y .
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The main example of quasi-isometry, which partly justifies the interest in such
maps, is given by the following result which says that the volume growth in universal
covers of compact Riemannian manifolds and growth of their fundamental groups
increase at the same rate, it was proved first by A. Schwarz and, 13 years later, by Milnor
[9], in other words growth is quasi-isometric invariant. It is well known that hyperbolicity
in the sense of Gromov, as well as the number of ends, are both quasi-isometric invariants.

Given M a compact, connected, Riemannian manifold, let M̃ be its universal
covering endowed with the pull-back Riemannian metric, then the fundamental group
π1pMq acts isometrically on M̃.

Theorem 2.3 (Milnor-Schwarz). Let M be a compact Riemannian manifold. Then the
group π1pMq is finitely generated, and the metric space M̃ is quasi-isometric to π1pMq

with some word metric.

Milnor-Schwarz’s theorem is more general than this and has other interesting
applications, for example, if G1 is a finite index subgroup of a finitely generated group G

then G1 is also finitely generated; moreover the groups G and G1 are quasi-isometric. In
particular, all these invariants are preserved by quasi-isometry.

The next result classifies all the subgroups of a hyperbolic group (the Cayley graph
is a hyperbolic metric space in the sense of Gromov), namely,

Theorem 2.4 (Tits alternative for hyperbolic groups). Let Γ be a subgroup of a hyperbolic
group. We have one of the following three cases:

1. Γ is finite;

2. Γ contains an infinite cyclic subgroup of finite index;

3. Γ contains a non-abelian free subgroup.

Proof. See Ghys and de la Harpe [6], page 157. ■

3. The fundamental group of compact negatively curved manifold

Throughout this section, we shall assume that our manifold is compact and with negative
sectional curvature. In particular, it follows that the sectional curvature is bounded by
negative constants.

Theorem 3.1. [3, Theorem 1] Let M be a compact negatively curved manifold. Then,
any amenable subgroup of π1pMq is cyclic.

Proof. Since M is compact, we can apply the Milnor-Schwarz lemma. Then the
fundamental group is quasi-isometric to the universal cover of M , which implies it is
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a hyperbolic group. By the Tits alternative for hyperbolic groups the subgroup is either
finite, virtually infinite cyclic, or contains a non-abelian free group. Since every amenable
group does not contain a non-abelian free group and πpMq is torsion free, we have that
any amenable subgroup is virtually infinite cyclic group. ■

It is a well known result; that the number of ends epGq of a finitely generated
group G is 0, 1, 2 or 8; moreover epGq “ 0 if and only if G is finite, while epGq “ 2

if and only if G is a virtually infinite cyclic group. Let H be a subgroup of πpMq; since
πpMq is torsion free, epHq ‰ 0; if H is amenable finitely generated then epHq ‰ 8;

then epHq P t1, 2u. Is it possible to prove that epHq is necessarily 2? Note that the only
case one still needs to prove is epHq ‰ 1. Yau [14] prove that any solvable subgroup of
πpMq is finitely generated. If one can prove this directly for amenable groups then the
discussion above can be used to provide another proof of theorem 3.1.

Corollary 3.2 (Beyers and Preissmman). Every abelian or solvable subgroup of πpMq is
infinite cyclic.

Preissmman [10] also proved that π1pMq is not abelian. This result admits the
following (quite hard) generalization, see [1]. To be precise:

Theorem 3.3 (Avez). Let M be a connected compact Riemannian manifold with
non-positive curvature everywhere, which is not a flat manifold; then the fundamental
group of M is not amenable.

The idea used to prove this result was bounding from below the volume of
geodesic balls centered at a point in the universal covering. In order to achieve this
the author uses comparison techniques on an associated Riccati equation and Birkhoff’s
theorem (on space and time means) applied to the geodesic flow on T1M.

Here we prove an intermediate version of this theorem:

Theorem 3.4. Let M be a compact negatively curved manifold. Then π1pMq is not
amenable. Moreover, π1pMq has no finite index amenable subgroup.

Proof. By Hadamard theorem the universal cover of M has one end and thus π1pMq is a
one ended group by Milnor-Schwarz. On the other hand, if π1pMq is amenable, by Tits
alternative it has two ends and this is a contradiction. ■

Observe that the previous result can also be obtained as an immediate consequence
of Eberlein’s theorem [4] since amenable groups do not contain a nontrivial free subgroup.

For the proof of Theorem 3.6 we need a theorem due to Swan [13] which
generalizes a theorem of Stallings [12].
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Theorem 3.5 (Swan). A torsion free group with a free subgroup of finite index is a free
group.

In particular, the fundamental group of M (compact, negatively curved) has no
finite index free subgroup.

Note that if π1pMq P C then π1pMq can be obtained by the following operations:

• Contain a finite index amenable subgroup.
• Contain a subgroup with a free product of amenable subgroups of finite index.

Theorem 3.6. Let M be a compact negatively curved manifold. Then π1pMq does not
belong to the class C.

Proof. In fact, we know that π1pMq has one end. Now, if πpMq contains a finite index
amenable subgroup, then it must be virtually Z and therefore it has 2 ends and this is a
contradiction. On the other hand, suppose π1pMq contains a subgroup with a free product
of amenable subgroups of finite index. In this case, π1pMq has finite index free subgroup
and therefore it has infinite ends, which is another contradiction. Thus, π1pMq does not
belong to the class C. ■

We now explain in more details how Gusevskij obtains Theorem 7 above. Let M̃n,
n ě 2, be a complete, simply connected, Riemannian manifold with sectional curvature
K satisfying the condition K ď k ă 0. The main result of [7] is the following.

Theorem 3.7 (Gusevskij). Let G be a discrete geometrically finite subgroup of IsopM̃q

the group of isometries of M̃ that does not contain parabolic elements. Then there exist a
G-equivariant homeomorphism of the completion of G onto the limit set of G.

Some comments must be done regarding the last Theorem. For this, let M̃p8q

be the virtual boundary and consider the cone topology τC in M̄ :“ M̃ Y M̃p8q. This
topology was introduced by Eberlein and O’Neill in [5] and it is characterized by the
following conditions: 1) the restriction of τC to M̃ coincides with the topology induced
by the Riemannian distance d, 2) M̃ is an open everywhere dense subset of M̄ , 3) for
any p P M̃ and x P M̃p8q the family of truncated cone with vertex in p and containing
x form a local basis of τC at x. Here truncated cone a is given by T pv, ε, rq “ ty P

M̄ : ?ppγvp8q, yq ă εuztq P M̃ : dpp, qq ď ru, where ?ppγvp8q, yq denotes the angle
between the vectors v P TpM̃ and γ1

pyp0q (γpy is the unique geodesic joining p and y).

It is well known that the set M̄ endowed with the cone topology τC is
homeomorphic to a closed ball in Rn, and M̃p8q is homeomorphic to the pn ´

1q-dimensional sphere Sn´1.
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Let G be a discrete subgroup of IsopM̃q. The set of limit poins in τC of the orbit
G ¨p of an arbitrary point p P M̃ is called cone limit set of G at p. This set does not depend
on the choice of p P M̃ and it is denoted by LpGq.

We denote by CaypG,Sq the undirected Cayley graph of a finitely generated
group G with respect to a finite set of generators S. Let f : N Ñ R` be a decreasing
integrable function that satisfies the following condition: for any k P N, there are
m,n P N such that mfprq ď fpkrq ď nfprq and fp0q “ fp1q. On CaypG,Sq we
define a metric depending on f as follows: the length of the edge in CaypG,Sq with
vertices g, h P G is equal to the minimum between fp|g|q and fp|h|q and the distance
between any two vertices of CaypG,Sq is equal to the minimum length among of the
lengths of all open polygons joining these vertices, where | ¨ | denote the word metric on
G.

We denote by CaypG,Sq the Cauchy completion of CaypG,Sq, with the metric
df . The completion of G is the metric space GpS, fq “ CaypG,SqzCaypG,Sq. For
example, consider G “ Z with generators S “ t˘2,˘3u and fpnq “ n´p, p ą 1. The
distance between the vertices ´3 and 3 is 3 ¨ 2´p. In this case, the completion of Z is a
metric space formed by two points.

In order to prove Theorem 8, first of all, Gusevskij considers a special set S0 of
generators using that G is a discrete geometrically finite subgroup of IsopM̃q. Then he
defines a map φ : CaypG,S0q Ñ M̃ and works to extend this map to φ̄ : CaypG,S0q Ñ

M̃ Y LpGq. He concludes by showing that φ̄, restricted to the completion of G gives
a G-equivariant homeomorphism between GpS0, fq and LpGq, for f as in the example
above.

Finally, the completion of a nontrivial free group is a totally disconnected metric
space, while, by Theorem 8 the completion of the fundamental group of a compact
Riemannian manifold Mn of negative curvature is homeomorphic to Sn´1. Therefore,
π1pMq is not free (see [7, Theorem 3].) By using this together with a result of Chen that
states that if π1pMq P C then π1pMq must be a free group (see [3, Theorem 3]), Gusevskij
obtains Theorem 7.
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