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Introduction

The study in equisingularity was started by Zariski in [1], where he was interested in
investigating this concept in an algebraic variety along an irreducible (singular) subvariety. First,
he dealt with different ways to define equivalent singularities of plane algebroid curves, and after
in [1] Zariski worked with algebroid hypersurfaces with a singular point at the origin.

In the meantime, in [1] introduced an operation on a ring A, which he called saturation,
which consists of passing from A to some ring Ã lying over A and under the integral closure of A
in its total ring of fractions. In that work Zariski showed how useful this operation is for the theory
of singularities by means of geometric applications to plane algebroid curves, and more generally,
to algebroid hypersurfaces.

Having its applications in his mind, firstly Zariski restricted himself to the case in which
A is a local domain of dimension one, and always with the assumption that the base field is
algebraically closed and of characteristic zero. Then, in [1, 1, 1] he presented his general theory
of saturation, extending several results and showing how to apply them to a more general setup in
the theory of singularities.
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The core of saturation theory developed by Zariski is to look for a special intermediate
algebra between a ringA and its integral closureA. In [9], in the case of complex analytic algebras,
Pham and Teissier observed that the germs of Lipschitz meromorphic functions lie between A and
A. Thus, they studied this algebra from a formal and geometric viewpoint, showing that it coincides
with the Zariski saturation in the hypersurface case. So, for a reduced complex analytic algebra A
with normalization A, Pham and Teissier defined the Lipschitz saturation of A as

A∗ := {f ∈ A | f ⊗C 1− 1⊗C f ∈ IA},

where IA denotes the kernel of the canonical mapA⊗CA! A⊗AA. Although Pham and Teissier
were thinking with an analytic background, they left a good question about if A∗

B ⊆ A, in the case
where B is an A-algebra and

A∗
B := {f ∈ B | f ⊗C 1− 1⊗C f ∈ IA,B},

where IA,B now denotes the kernel of the canonical map B ⊗C B ! B ⊗A B.

So, in [8] Lipman extended this definition for a sequence of ring morphisms R! A
g
! B,

and defined what he called the relative Lipschitz saturation of A in B, denoted by A∗
B,R. Besides,

Lipman developed several techniques and general properties on this operation in the ring A.

Recently, Gaffney used this machinery to deal with bi-Lipschitz equisingularity of families
of curves in [4], defining a notion of Lipschitz saturation for an ideal of a complex analytic algebra.
After that, Gaffney showed this Lipschitz saturation is related to the integral closure of the double
of the ideal, a concept that he defined and used to get a type of infinitesimal Lipschitz condition
for a family of complex analytic hypersurfaces in [5].

The aim of this work is to introduce the concept of relative Lipschitz saturation and show
that such a construction always results in a radicial algebra. Another objective of this work is to
enhance the understanding of the presented results by providing additional details and auxiliary
lemmas to support the central arguments of the main proofs.

In the first section, we provide the basic definitions and the most immediate results, along
with the presentation of some classic examples.

In the second section, we present the main results regarding the categorical and algebraic
properties of Lipschitz saturation. Finally, in the third section, we show how Lipschitz saturation
serves as a source of radicial algebras.

1. Basic properties

Let R be a ring and let A,B be R-modules and consider a sequence of ring morphisms

R
τ
−! A

g
−! B.
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Consider the map from B to its tensor product by R, in a diagonal way:

∆ : B −! B ⊗R B

b 7−! b⊗R 1− 1⊗R b.

It is easy to conclude the following properties of ∆:

1. ∆(b1 + b2) = ∆(b1 + b2), ∀b1, b2 ∈ B;
2. ∆(rb) = r∆(b),∀r ∈ R and b ∈ B;
3. (Leibniz rule) ∆(b1b2) = (b1 ⊗R 1)∆(b2) + (1⊗R b2)∆(b1),∀b1, b2 ∈ B.

By the universal property of the tensor product, there exists a unique R-algebras morphism

φ : B ⊗R B −! B ⊗A B

which maps x⊗R y 7! x⊗A y, for all x, y ∈ B.

Furthermore, we have that (see [1], 8.7)

kerφ = ⟨ax⊗R y − x⊗R ay | a ∈ A and x, y ∈ B⟩.

Notice that ax⊗R y − x⊗R ay = (x⊗R y)(g(a)⊗R 1− 1⊗R g(a)). Therefore,

kerφ = ⟨g(a)⊗R 1− 1⊗R g(a) | a ∈ A⟩ = ∆(g(A))(B ⊗R B),

i.e, kerφ is the ideal of B ⊗R B generated by the image of ∆ ◦ g.

Definition 1.1. The Lipschitz saturation of A in B relative to R τ
! A

g
! B is the set

A∗
B,R := A∗ :=

{
x ∈ B | ∆(x) ∈ kerφ

}
.

If A∗ = g(A) then A is said to be saturated in B. An important particular case is when A
is an R-subalgebra of B, taking g as the inclusion. Let us see the first properties of the Lipschitz
saturation.

Proposition 1.2 ([8]). A∗ is an R-subalgebra of B which contains g(A).

Proof. Clearly g(A) ⊆ A∗ ⊆ B. Let x, y ∈ A∗ and r ∈ R. So, ∆(x),∆(y) ∈ kerφ. Then:

∆(x+ y) = ∆(x) + ∆(y) ∈ kerφ.

Thus, x+ y ∈ A∗. For the product, notice that

∆(xy) = (x⊗R 1)∆(y) + (1⊗R y)∆(x) ∈ kerφ.
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Hence xy ∈ A∗. Finally,

∆(rx) = r∆(x) = g(τ(r))∆(x) ∈ kerφ,

and therefore, rx ∈ A∗. ■

Proposition 1.3 ([8]). Let A be an R-subalgebra of B and let C be an R-subalgebra of B
containing A as an R-subalgebra.

R A C Bτ

g

If C∗ = C∗
B,R then A∗ ⊆ C∗.

Proof. Consider the diagram

B ⊗R B B ⊗A B

B ⊗
C
B

φ

φC λ

where φC e λ are the canonical morphisms. It is easy to see this diagram commutes, so kerφ ⊆
kerφC , which implies kerφ ⊆ kerφC . Therefore, A∗ ⊆ C∗. ■

Corollary 1.4. If A is an R-subalgebra of B then:

1. A ⊆ A∗.
2. (A∗)∗ = A∗.

Proof. (1) In this case g is the inclusion map, so A = g(A) ⊆ A∗.

(2) Using (1), changing A by A∗ (which is contained in B), we conclude that A∗ ⊆ (A∗)∗.
For the converse, consider the canonical morphism

φ∗ : B ⊗R B ! B ⊗A∗ B.

Notice that {∆(x) | x ∈ A∗} ⊆ kerφ, and consequently

⟨{∆(x);x ∈ A∗}⟩ ⊆ kerφ =⇒ kerφ∗ ⊆ kerφ.

Thus, kerφ∗ ⊆ kerφ = kerφ which implies ∆−1
(
kerφ∗

)
⊆ ∆−1

(
kerφ

)
. Hence,

(A∗)∗ ⊆ A∗.

■
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Here is a motivating example of relative saturation in the case of analytic complex varieties.

Example 1.5. Following the approach of Pham-Teissier in [9], let A be the local ring of an
irreducible complex analytic space X ⊆ Cn at the origin, and let A its normalization. Working
with the canonical morphism φ : A⊗CA! A⊗AA (and with the analytic tensor product), Pham
and Teissier defined the Lipschitz saturation of A as the set A∗ of the elements h ∈ A such that
h⊗ 1− 1⊗ h ∈ A⊗C A is in the integral closure of kerφ. In our notation:

A∗ = ∆−1(kerφ),

where ∆ : A! A⊗C A is the diagonal map.

Now we present a connection between this notion and that of Lipschitz functions. If we
choose generators z1, . . . , zn of the maximal ideal of the local ring then {∆(zi)}ni=1 is a set of
generators of kerφ. One can choose z1, . . . , zn so that they are restrictions of coordinates on the
ambient space Cn. Using the supremum criterion obtained by Jalabert and Teissier in [7], for all
h ∈ A one has:

h ∈ A∗ ⇐⇒ ∆(h) ∈ kerφ

which is equivalent to the existence of some neighborhood U of (0, 0) on X × X and a constant
C > 0 such that

|∆(h)(z, z′)| ≤ C sup{|∆(zi)(z, z
′)|}ni=1,∀(z, z′) ∈ U.

This last inequality is equivalent to

|h(z)− h(z′)| ≤ C|z − z′|sup, ∀(z, z′) ∈ U,

which is what is meant by the meromorphic function h being Lipschitz at the origin in X .

Next, we see an algebraic version of the previous example.

Example 1.6. Let k be an algebraically closed field, denote An as the n-dimensional affine space
over k, and let V ⊆ An be an irreducible affine algebraic set. We recall some important notations:

• k[V ] is the coordinate ring of V (which is a domain, once V is irreducible);

• k(V ) is the field of fractions of k[V ];

• k[V ] is the integral closure of k[V ] in k(V );

• For each i ∈ {1, . . . , n} we denote xi : V ⊆ An ! k as the projection onto the ith-factor.

Here we consider
∆ : k[V ] ! k[V ]⊗k k[V ]

f 7−! f ⊗k 1− 1⊗k f

and the canonical map

φ : k[V ]⊗k k[V ] −! k[V ]⊗k[V ] k[V ].
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In this way, clearly k[V ] = k[x1, . . . ,xn]. For all i1, . . . , in ∈ Z≥0, using the Leibniz rule
to get the equations

∆(xi11 ) = (xi1−1
1 ⊗k 1)∆(x1) + (1⊗k x1)∆(xi1−1

1 )

∆(xi11 · · ·xinn ) = ((xi11 · · ·xin−1

n−1 )⊗k 1)∆(xinn ) + (1⊗k x
in
n )∆(xi11 · · ·xin−1

n−1 )

as inductive steps, one can see that ∆(xi11 · · ·xinn ) ∈ ⟨∆(xi) | ∀i ∈ {1, . . . , n}⟩, for every
i1, . . . , in ∈ Z≥0. Since every a ∈ k[V ] is a polinomial at x1, . . . ,xn and kerφ = ∆(g(A))(B ⊗R

B), one has
kerφ = ⟨∆(xi) | i ∈ {1, . . . , n}⟩.

It is known that k[V ] ⊗k k[V ] ∼= k[V × V ] in a such way that for every f, g ∈ k[V ], the
tensor product f ⊗k g can be identified as the map

f ⊗k g : V × V −! k

(x, y) 7−! f(x)g(y)
.

Thus, for each i ∈ {1, . . . , n} we have

(xi ⊗k 1− 1⊗k xi)(x1, . . . , xn, y1, . . . , yn) = xi − yi.

Besides, we can conclude the Lipschitz saturation of k[V ] on k[V ] is

k[V ]∗ = {f ∈ k[V ] | f ⊗k 1− 1⊗k f ∈ ⟨xi ⊗k 1− 1⊗k xi⟩ni=1}.

2. Some categorical results on the Lipschitz saturation

In this section we present some details in Lipman’s proofs for some categorical results
retated to the relative Lipschitz saturation of algebras of [8].
Lemma 2.1. Suppose that

A B

A′ B′

α

α′

ψϕ

is a commutative diagram of ring morphisms. Then

ϕ(kerα) ⊆ kerα′.

If ϕ is surjective and ψ is injective then the equality holds.

Proof. Since ψ ◦ α = α′ ◦ ϕ then ϕ(kerα) ⊆ kerα′. Let v ∈ ϕ(kerα). So there exists u ∈ kerα

such that v = ϕ(u). Further, there are a1, . . . , ar ∈ A such that

ar + ar−1u+ · · ·+ a1u
r−1 + ur = 0, (⋆)
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where ai ∈ (kerα)i,∀i ∈ {1, . . . , r}. Thus, bi := ϕ(ai) ∈ (kerα′)i and applying ϕ on (⋆) we
obtain

br + br−1v + · · ·+ b1v
r−1 + vr = 0.

Therefore, v ∈ kerα′. In the case where ϕ is surjective we have α′(A′) ⊆ ψ(B), and if ψ is
injective then

A B

A′ ψ(B)

α

α̃′

ψ̃ϕ

is a commutative diagram, where ψ̃ is an isomorphism, α̃′ and ψ̃ are the restriction of α′ and ψ on
their respective image. Analogously, ϕ−1(ker α̃′) ⊆ kerα and therefore kerα′ ⊆ ϕ(kerα). ■

Proposition 2.2 ([8]). Suppose that

R A B

R′ A′ B′

τ g

τ ′ g′

fR ffA

is a commutative diagram of ring morphisms. Then

f
(
A∗
B,R

)
⊆ (A′)

∗
B′,R′ .

Proof. Consider the canonical morphism φ′ : B′ ⊗R′ B′ ! B′ ⊗A′ B′ and

∆′ : B′ −! B′ ⊗R′ B′

x′ 7−! x′ ⊗R′ 1− 1⊗R′ x′.

The universal property of the tensor product guarantees the existence of morphisms ϕ and
ψ which maps

b1 ⊗R b2 f(b1)⊗R′ f(b2)

b1 ⊗A b2 f(b1)⊗A′ f(b2)

ϕ

ψ

and consequently, the diagram

B B ⊗R B B ⊗A B

B′ B′ ⊗R′ B′ B′ ⊗A′ B′

∆ φ

∆′ φ′

f ϕ ψ

commutes. SinceA∗
B,R = ∆−1(kerφ) then ∆(A∗

B,R) ⊆ kerφ and we get ϕ(∆(A∗
B,R)) ⊆ ϕ(kerφ).

LAJM v. 03 n. 01 (2024) 7
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Now, Lemma 2.1 and the commutativeness of the above diagram imply that ∆′(f(A∗
B,R)) ⊆ kerα′,

and therefore
f(A∗

B,R) ⊆ (∆′)−1(kerα′) = (A′)∗B′,R′ .

■

Here we point out that Proposition 1.3 proved by Lipman is true even in the case where the
sequence of rings A! C ! B is not necessarily a chain of subalgebras.

Proposition 2.3. If R A C Bτ λ gC

g

is a sequence of ring morphisms then

A∗
B,R ⊆ C∗

B,R.

Proof. Indeed, the given sequence of ring morphisms induces the commutative diagram

R A B

R C B

τ g

idBidR

τC

λ

gC

.

Now it suffices to apply Proposition 2.2 to get A∗
B,R ⊆ C∗

B,R. ■

Let us fix some notation before the next result. Let I be a directed set. We denote a direct
system over I as (A•, ν), which means that we have a collection {Ai}i∈I of rings and for every
i ≤ j ∈ I we have a ring morphism νij : Ai ! Aj satisfying the known conditions for a direct
system.1

It is well known that the category of rings is complete and cocomplete. In particular,
(A•, ν) admits a direct limit lim−!

I

A• = (A,α), i.e, there exists a collection of ring morphisms

{αi : Ai ! A} satisfying the known conditions for a direct limit. This collection we denote as
α• : A• ! A.

In the case of rings we can construct explicitly lim−!
I

A• as the quotient

⊕
i∈I
Ai

Sν
, where Sν is

the Z-submodule of
⊕
i∈I
Ai generated by sequences on the form (xi)i∈I where νij(xi) = xj , for all

i ≤ j ∈ I . This limit can be endowed with a ring structure induced by Ai, i ∈ I , such that the
canonical maps αi : Ai ! A (i ∈ I) (which are formed by composing inclusion with the quotient
map) satisfies the universal property for the direct limit.

Proposition 2.4 ([8]). Let (R•, µ)
τ•! (A•, ν)

g•
! (B•, θ) be a sequence of morphisms of direct

systems of rings over a directed set I . Suppose that ρ• : R• ! R, α• : A• ! A and β• : B• ! B

are direct limits of R•, A• and B•, respectively. It is well known that there exist ring morphisms

1The reader can check these conditions in [2], for example.

LAJM v. 03 n. 01 (2024) 8
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τ : R! A and g : A! B such that

Ri Ai Bi

R A B

τi gi

τ g

ρi αi βi

is a commutative diagram, for every i ∈ I .

1. For all i ≤ j ∈ I the map

θ∗ij : (Ai)
∗
Bi,Ri

−! (Aj)
∗
Bj ,Rj

z 7−! θij(z)

is a well-defined morphism of rings.

2. ((A•)
∗
B•,R• , θ

∗) is a direct system of rings over I .

3. lim−!
I

(A•)
∗
B•,R•

∼= A∗
B,R.

Proof. 1. Since τ• and g• are morphisms of direct systems, for i ≤ j ∈ I we have the following
commutative diagram:

Ri Ai Bi

Rj Aj Bj

τi gi

τj gj

µij νij θij

Now, Proposition 2.2 implies θij((Ai)∗Bi,Ri
) ⊆ (Aj)

∗
Bj ,Rj

. Hence, θ∗ij is well-defined, and clearly it
is a ring morphism.

2. For each i ∈ I , since (B•, θ) is a direct system then θii = idBi
. Hence, θ∗ii = id(Ai)∗Bi,Ri

.
Furthermore, if i ≤ j ≤ k ∈ I , since θik = θjk ◦ θij then θ∗ik = θ∗jk ◦ θ∗ij .

3. Using the previous notation it is straightforward to check that the map

ψ : lim−!
I

(Ai)
∗
Bi,Ri

−! A∗
B,R

(xi)i∈I + Sθ∗ 7−! (βi(xi))i∈I + Sθ

is an isomorphism. ■

Proposition 2.5 ([8]). Let gi : Ai ! Bi be R-algebra morphisms and let g : A! B be the direct
product of those maps, that is,

A =

(
n∏
i=1

Ai

)
g=

∏
gi

−!

(
n∏
i=1

Bi

)
= B.

LAJM v. 03 n. 01 (2024) 9
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Then,

A∗
B,R =

n∏
i=1

(Ai)
∗
Bi,R

.

Proof. For each i ∈ {1, . . . , n} consider the canonical morphism φi : Bi ⊗R Bi ! Bi ⊗Ai
Bi and

the diagonal ∆i : Bi ! Bi ⊗R Bi. Let φ̃ be the composition of the morphisms

n∏
i,j=1

(Bi ⊗R Bj)
n∏
i=1

(Bi ⊗R Bi)
n∏
i=1

(Bi ⊗
Ai

Bi)
p=projection

∏
φi

.

Thus, ker φ̃ = ker(
∏
φi) ×

(
n∏

i ̸=j=1

(Bi ⊗R Bj)

)
. Once the kernel and integral closure for ideals

commute with a finite direct product, one has

ker φ̃ =

(
n∏
i=1

kerφi

)
×

n∏
i ̸=j=1

(Bi ⊗R Bj) = p−1

(
n∏
i=1

kerφi

)
.

On the other hand, we have the commutative diagram

n∏
i,j=1

(Bi ⊗R Bj)
n∏
i=1

(Bi ⊗Ai
Bi)

B ⊗R B B ⊗A B

φ̃

φ

ϕ ψ

where ϕ is an isomorphism, ψ is a canonical injective morphism and p ◦ ϕ−1 ◦∆ =
∏

∆i. Hence,
ϕ(ker φ̃) = kerφ. Therefore:

A∗
B,R = ∆−1(kerφ) = ∆−1(ϕ(ker φ̃)) = ∆−1

(
ϕ

(
p−1

(
n∏
i=1

kerφi

)))

= (p ◦ ϕ−1 ◦∆)−1

(
n∏
i=1

kerφi

)
=
(∏

∆i

)( n∏
i=1

kerφi

)
=

n∏
i=1

∆−1
i (kerφi) =

n∏
i=1

(Ai)
∗
Bi,R

.

■

In the next proposition, we prove the base change for a flat algebra partially preserves
Lipschitz saturation.

Proposition 2.6. Let R τ
! A

g
! B be a sequence of ring morphisms, let R′ be a flat R-algebra

and consider the induced sequence

R′ ∼= R⊗R R
′ A⊗R R

′ B ⊗R R
′τ ′ g′=g⊗RidR′
.

LAJM v. 03 n. 01 (2024) 10
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Then:
A∗
B,R ⊗R R

′ ⊆ (A⊗R R
′)∗B⊗RR′,R′ .

Proof. Denote A′ := A⊗R R
′, B′ := B ⊗R R

′, and consider the canonical maps

B′ B′ ⊗R′ B′ B′ ⊗A′ B′∆′ φ′

.

We have
B′ ⊗R′ B′ = (B ⊗R R

′)⊗R′ (B ⊗R R
′) ∼= B ⊗R (R′ ⊗R′ B)⊗R R

′

∼= (B ⊗R B)⊗R R
′ ∼= B ⊗R B

′,

and (B ⊗A B)⊗R R
′ ∼= B ⊗A (B ⊗R R

′) = B ⊗A B
′ which maps canonically to B′ ⊗A B

′, and
then to B′ ⊗A′ B′. Thus, there exists a commutative diagram

B′

B ⊗R B
′ (B ⊗R B)⊗R R

′ (B ⊗A B)⊗R R
′

B′ ⊗R′ B′ B′ ⊗A′ B′φ′

γ φ⊗RidR′

∆⊗RidR′

ϕ ψ

ϕ−1◦∆′

where γ and ϕ are ring isomorphisms.

Let x ∈ A∗
B,R and y ∈ R′. So, ∆(x) ∈ kerφ and consequently

γ ◦ ϕ−1 ◦∆′(x⊗R y) = (∆⊗R idR′)(x⊗R y)) = ∆(x)⊗R y ∈ kerφ⊗R R
′.

Since kerφ is an ideal of B ⊗R B then kerφ ⊗R R′ ⊆ kerφ⊗R R′, which is contained in
ker(φ⊗R idR′). In particular, ∆′(x⊗R y) ∈ ϕ(γ−1(ker(φ⊗R idR′))). Once γ is an isomorphism,
we have

γ−1(ker(φ⊗R idR′)) = γ−1(ker(φ⊗R idR′)) ⊆ ker((φ⊗R idR′) ◦ γ)

⊆ ker(ψ ◦ (φ⊗R idR′) ◦ γ) = ker(φ′ ◦ ϕ).

Hence, ∆′(x⊗R y) ∈ ϕ(ker(φ′ ◦ ϕ)). Since ϕ is an isomorphism then

ϕ(ker(φ′ ◦ ϕ)) = ϕ(ker(φ′ ◦ ϕ)) = kerφ′.

Therefore, ∆′(x⊗R y) ∈ kerφ′ and we get x⊗R y ∈ (A′)∗B′,R′ , which finishes the proof. ■

The next corollary is in [8], and here we get it as a straightforward consequence of our
previous proposition.

Corollary 2.7 (Faithfully flat descent). Under the notation of Proposition 2.6, assume that R′ is a
faithfully flat R-algebra. If A⊗R R

′ is R′-saturated in B ⊗R R
′ then A is R-saturated on B.

LAJM v. 03 n. 01 (2024) 11
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Proof. Indeed, by hypothesis (A′)∗B′,R′ = g′(A′) = (g ⊗R idR′)(A ⊗R R′) = g(A) ⊗R R′.
Proposition 2.6 implies that A∗

B,R ⊗R R
′ ⊆ g(A)⊗R R

′, and so

A∗
B,R ⊗R R

′ = g(A)⊗R R
′.

Since R′ is R-flat then 0 =
A∗
B,R ⊗R R

′

g(A)⊗R R′ =
A∗
B,R

g(A)
⊗R R

′ and the faithfulness of R′ implies

that
A∗
B,R

g(A)
= 0, i.e, A∗

B,R = g(A). ■

3. Relative Lipschitz saturation and radicial algebras

Let us recall some important definitions before continuing.
Definition 3.1. Let h : S ! T be a ring morphism. We say that T is a radicial S-algebra if:

1. The induced map on spectra Spec(h) : SpecT ! SpecS is injective;

2. For every q ∈ SpecS the embedding hq : Frac
(

S

h−1(q)

)
↪! Frac

(
T

q

)
induced by h is

purely inseparable.2

In this case, we also say that h is a radicial ring morphism.

Recall that if K is a field and T is a ring we can identify MorSchemes(SpecK, SpecT ) as the
set

{(q, β) | q ∈ SpecT and β : Frac
(
T

q

)
! K is a ring morphism}.

We recall some properties of radicial algebras.
Theorem 3.2. The following conditions are equivalent:

(a) h : S ! T is a radicial ring morphism;
(b) Any two distinct morphisms of T into a field have distinct composition with h;
(c) The kernel of the canonical morphism γ : T ⊗S T ! T is a nil ideal of T ⊗S T ;
(d) t⊗S 1− 1⊗S t is nilpotent in T ⊗S T , ∀t ∈ T .

Proof. Let ĥ : SpecT ! SpecS be the morphism of schemes induced by h and let K be a field.
Then we have a canonical commutative diagram of maps

MorRings(T,K) MorRings(S,K)

MorSchemes(SpecK, SpecT ) MorSchemes(SpecK, SpecS)

h∗

Ψ

λT λS

where

• λT and λS are canonical bijections;
2Frac stands for the field of fractions.
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• h∗(δ) = δ ◦ h,∀δ ∈ MorRings(T,K);
• Ψ(α) = ĥ ◦ α, ∀α ∈ MorSchemes(SpecK, SpecT );
• Ψ(q, β) = (h−1(q), β ◦ hq), ∀(q, β) ∈ MorSchemes(SpecK, SpecT ).

Now, it is clear that h is radicial if and only if Ψ is injective, and since the above diagram
commutes and λT and λS are bijections, then Ψ is injective if and only if h∗ is injective.

Hence, the equivalence (a) ⇐⇒ (b) is proved.

The equivalence (c) ⇐⇒ (d) holds because the kernel of the canonical map T ⊗S T ! T

is generated by the elements of the form t⊗S 1− 1⊗S t is nilpotent in T ⊗S T , ∀t ∈ T .

(b) ⇐⇒ (c) In this case it is useful to work with the diagonal map

∆X/S : X ! X ×SpecS X,

where X := SpecT , which corresponds to the ring morphism γ : T ⊗S T ! T . Thus, (b) is
equivalent to ∆X/S to be surjective (see [6], Prop. 3.7.1). ■

Definition 3.3 (Unramified algebra). Let T be an S-algebra and γ : T ⊗S T ! T be the canonical
morphism which takes u⊗S v 7! uv,∀u, v ∈ T . We say that T is an unramified S-algebra if the
following conditions hold:

1. ker γ is a finitely generated ideal of T ⊗S T ;
2. (ker γ)2 = ker γ.

Using the determinant trick it is easy to see that condition (2) implies that there exists
e ∈ ker γ such that ker γ is the principal ideal generated by e, and e2 = e.

Lemma 3.4. Let h : S ! T be a surjective ring morphism, x ∈ S, and let I be an ideal of S. If

h(x) ∈ h(I) then x is integral over I mod kerh, i.e, x+ kerh ∈
(

I

kerh

)
.

Proof. By hypothesis there exist bi = h(ai), ai ∈ I i,∀i ∈ {1, . . . , n}, such that

h(xn + a1x
n−1 + · · ·+ an−1x+ an) = 0.

If we denote ū := u+ kerh, ∀u ∈ S, the last equation implies that

x̄n + a1x̄
n−1 + · · ·+ an−1x̄+ an = 0̄,

with ai ∈
(

I

kerh

)i
, ∀i ∈ {1, . . . , n}, which finishes the proof. ■

Before we continue, let us prove a useful lemma to proceed with this section.
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Lemma 3.5. Let R be a ring and I, J1, . . . , Jn ideals of R where the product J1 · · · Jn is a nil ideal
of R. If x ∈ R is integral over I mod Ji, ∀i ∈ {1, . . . , n} then x ∈ I .

Proof. For each i ∈ {1, . . . , n} there exists a monic polynomial pi ∈ R[X], with suitable
coefficients related to the integral dependence over I mod Ji, such that pi(x) ∈ Ji. Setting
p := p1 · · · pn, one has p(x) ∈ J1 · · · Jn ⊆

√
(0) which ensures the existence of an r ∈ N such

that (p(x))r = 0. Therefore, x ∈ I . ■

In the following result, Lipman proved that a radicial base change does not change the
relative Lipschitz saturation.

Proposition 3.6 ([8]). Consider the diagram of ring morphisms

R R′ A B
gτ ′λ

τ :=τ ′◦λ

Then:

a) A∗
B,R ⊆ A∗

B,R′;

b) If R′ is a radicial or unramified R-algebra then A∗
B,R = A∗

B,R′ .

Proof. (a) By hypothesis the diagram

R A B

R′ A B

λ idA idB

τ g

τ ′ g

is commutative. Now Proposition 2.2 implies that A∗
B,R = idB(A∗

B,R) ⊆ A∗
B,R′ .

(b) Let γ : R′ ⊗R R
′ ! R′ be the canonical morphism. Let us prove that in either case

there exists e′ ∈ ker γ such that e′2 = e′ and ker γ ⊆
√

(e′).

(i) Assuming that R′ is a radicial R-algebra, Theorem 3.2 says that ker γ is a nil ideal of
R′ ⊗R R

′. In this case, take e′ := 0.

(ii) Suppose that R′ is an unramified R-algebra. As we observed, there exists e′ ∈ ker γ

such that e′2 = e′ and ker γ = (e′). In particular, ker γ ⊆
√

(e′), and our claim is proved.

Now, before to prove another inclusion, let us prepare the way. Consider the commutative
diagram

R′ ⊗R R
′ A⊗R A B ⊗R B B ⊗A B

B B ⊗R′ B

τ ′⊗Rτ
′ g⊗Rg φ

∆′

φ′
ψ∆

LAJM v. 03 n. 01 (2024) 14
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where ψ is the canonical morphism, and set σ := (g ⊗R g) ◦ (τ ′ ⊗R τ
′). We already know that

kerψ is the ideal of B ⊗R B by the image of ∆ ◦ g ◦ τ ′. It is straightforward to conclude that

∆(g(τ ′(b))) = σ(b⊗R 1R′ − 1R′ ⊗R b), ∀b ∈ R′,

and since ker γ is generated by {b⊗R 1R′ − 1R′ ⊗R b | b ∈ R′} then kerψ is the ideal of B ⊗R B

generated by σ(ker γ). In particular, e := σ(e′) ∈ kerψ and e2 = e. Further, since ker γ ⊆
√

(e′)

then kerψ ⊆
√

(e). Setting J as the ideal of B⊗RB generated by 1− e. Thus, once e(1− e) = 0,
it follows that

(kerψ)J ⊆
√

(e)(1− e) = (0),

and consequently, (kerψ)J is a nil ideal of B ⊗R B. Since ψ is surjective and φ = φ′ ◦ ψ then
ψ(kerφ) = kerφ′.

Finally, let us check the inclusion A∗
B,R′ ⊆ A∗

B,R. Taking any x ∈ A∗
B,R′ , one has

ψ(∆(x)) = ∆′(x) ∈ kerφ′ = ψ(kerφ),

and Lemma 3.4 implies that ∆(x) is integral over kerφ mod kerψ. Besides, since e ∈ kerψ

then c := ∆(x)e ∈ kerψ, and clearly kerψ ⊆ kerφ, hence c ∈ kerφ. Notice that

∆(x)− c = ∆(x)(1− e) ∈ J,

which implies that ∆(x) is integral over kerφ mod J . Since (kerφ)J is a nil ideal, Lemma 3.5
ensures that ∆(x) ∈ kerφ, and therefore x ∈ A∗

B,R. ■

Before presenting the proof of the main theorem of this work, let us establish some auxiliary
results.
Lemma 3.7. Let h : S ! T be a ring morphism, x ∈ S, and suppose that kerh is a nil ideal of S.
If h(x) ∈

√
(0T ) then x ∈

√
(0S).

Proof. By hypothesis there exists r ∈ N such that (h(x))r = 0T , i.e, h(xr) = 0T . So, xr ∈ kerh ⊆√
(0S), which implies that x ∈

√√
(0S) =

√
0S . ■

In the next lemma, we observe that we do not need to require the kernel of h to be a nil
ideal in order to guarantee that ker(h⊗R h) is a nil ideal, as in [8].
Lemma 3.8. [3, Lemma 3.2] Let h : S ! T be an integral morphism of R-algebras.

a) ker(h⊗R h) is a nil ideal of S ⊗R S;
b) Suppose that kerh is a nil ideal of S. Then I = h−1(IT ), for every I ideal of S.

Proof. (a) We want to show that ker(h ⊗R h) ⊆
⋂

p∈Spec(S⊗RS)

p, so it is sufficient to show that the

induced map (h⊗R h)
♯ : Spec(T ⊗R T )! Spec(S ⊗R S) is surjective.
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Let p ∈ Spec(S⊗R S). The domain
S ⊗R S

p
can be embedded into an algebraically closed

field F such that the kernel of the composition

S ⊗R S
projection
−!

S ⊗R S

p
↪! F

is p. Let α be this composition and let γ1, γ2 : S ! S ⊗R S be the canonical maps which takes
s ⊗R 1

γ1 [ s γ27! 1 ⊗R s, for all s ∈ S. Since h is an integral morphism then there exist ring
morphisms δ1, δ2 : T ! F for which the diagram

T

S

S ⊗R S F

S

T

h

γ1

γ2

h

α

δ1

δ2

commutes. The universal property of the tensor product ensures the existence of a unique ring
morphism β : T ⊗R T ! F such that β(u ⊗R v) = δ1(u)δ2(v), ∀u, v ∈ T . Defines q :=

ker β ∈ Spec(T ⊗R T ). Clearly α = β ◦ (h ⊗R h), and since p = kerα then we conclude that
(h⊗R h)

−1(q) = p.

(b) The persistence of the integral closure of ideals implies h(I) ⊆ IT . Conversely, assume
that x ∈ h−1(IT ). Thus, y := h(x) is integral over IT , and then yX is integral over T [(IT )X],
which is integral over h(S)[h(I)X], once h is an integral morphism. Thus, for each y there exist
ai ∈ I i, i ∈ {1, . . . , n} such that

h(an) + · · ·+ h(a1)y
n−1 + yn = 0.

Hence, an + · · ·+ a1x
n−1 + xn ∈ kerh ⊆

√
(0), which implies the existence of r ∈ N such that

(an + · · ·+ a1x
n−1 + xn)r = 0.

Therefore, x ∈ I . ■

Finally, we present the main theorem of this work, where Lipman showed that relative
Lipschitz saturation always gives rise to a radicial algebra.

Theorem 3.9 ([8]). Consider the sequence of ring morphisms R! A
g
! B, and suppose that g is

an integral morphism. Then A∗
B,R is a radicial A-algebra.
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Proof. By Theorem 3.2 we have to check if the kernel of the canonical morphism

γ : A∗
B,R ⊗A A

∗
B,R ! A∗

B,R

is a nil ideal ofA∗
B,R⊗AA

∗
B,R. Once ker γ is the ideal generated by {x⊗A1B−1B⊗Ax | x ∈ A∗

B,R},

it suffices to show that δ(x) := x⊗A 1B−1B⊗A x ∈
√

(0A∗
B,R⊗AA

∗
B,R

), ∀x ∈ A∗
B,R. Before to take

care of it, observe that since g is an integral morphism thenB is integral over g(A), and we already
know that g(A) ⊆ A∗

B,R, henceB is integral overA∗
B,R. Consequently, the inclusion ι : A∗

B,R ↪! B

is an integral morphism of A-algebras. By Lemma 3.83 we can conclude that the kernel of the map
ι⊗A ι : A

∗
B,R ⊗A A

∗
B,R ! B ⊗A B is a nil ideal of A∗

B,R ⊗A A
∗
B,R.

Finally, let us check what remains. If x ∈ A∗
B,R then ∆(x) ∈ kerφ, and there exist

ai ∈ (kerφ)i, i ∈ {1, . . . , n} such that

(∆(x))n + a1(∆(x))n−1 + · · ·+ an−1∆(x) + an = 0B⊗AB.

Applying φ in the last equation we obtain (φ(∆(x)))n = 0B⊗AB. It is easy to see that
(ι ⊗A ι)(δ(x)) = φ(∆(x)), hence (ι ⊗A ι)(δ(x)) ∈

√
(0B⊗AB). Since ker(ι ⊗A ι) is a nil ideal

then by Lemma 3.7 we conclude that δ(x) ∈
√

(0A∗
B,R⊗AA

∗
B,R

), which ends the proof. ■
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