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Abstract. The aim of this study is to find a sequence of Jacobsthal-type numbers, which
we will denote by {JMn}n≥0 and name as the sequence of Jacobsthal-Mulatu, such
that each term of the Jacobsthal-Lucas sequence, denoted by {jn}n≥0, is an average
term between JMn and Jn, where {Jn}n≥0 is the classical Jacobsthal sequence. We
investigated some key characteristics of the sequence of Jacobsthal-Mulatu. In this
study, we present some interesting properties of these sequences of numbers explored
in connection with the sequences {Jn}n≥0 and {jn}n≥0.
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1. Introduction

The Fibonacci sequence, {0, 1, 1, 2, 3, 5, 8, . . .}, is known such that each term of this
sequence is the sum of the previous two and is defined by the recurrence relation Fn = Fn−1+Fn−2

such that n ≥ 2 with the initial values F0 = 0 and F1 = 1. The Fibonacci sequence is
listed as A000045 in the OEIS [1]. Moreover, Lucas sequence, whose recurrence relation is
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Ln = Ln−1 + Ln−2 such that n ≥ 2 and initial values are L0 = 2 and L1 = 1, is known as
sequence A000032 in the OEIS [1]. It is one of the well-known mathematical facts and has a
considerable number of applications, see [2, 3, 4]. Recently, in [5], by changing the initial terms,
the Fibonacci-Mulatu sequence is defined by FMn = FMn−1 + FMn−2 such that n ≥ 2 with the
initial values FM0 = 4 and FM1 = 1, and this sequence is cataloged as A022095 in the OEIS [1].
We can cite here recent papers [5, 6, 7, 8], where Fibonacci-Mulatu numbers are considered.

The Jacobsthal sequence, {0, 1, 1, 3, 5, 11, 21, . . .}, is the sequence in which the terms are
defined by the recurrence relation Jn = Jn−1+2Jn−2 such that n ≥ 2 with the initial values J0 = 0

and J1 = 1. Analogously to the Lucas sequence, the Jacobsthal–Lucas sequence [9] is defined by
the same recurrence relation jn = jn−1 + 2jn−2 such that n ≥ 2 and initial values j0 = 2 and
j1 = 1.

Theorem 5 from [7] established that the Lucas sequence is the arithmetic mean of the
Fibonacci and Fibonacci–Mulatu sequences, that is,

2Ln = Fn + FMn , for all n ∈ N . (1)

Equation (1) determines when a sequence has the suffix Mulatu. Consider three distinct
sequences A = {an}n≥0, B = {bn}n≥0 and C = {cn}n≥0 with the same recurrence relation,
where B is the Lucas type of A. If

2bn = an + cn , for all n ∈ N,

then we say that the sequence C has the suffix Mulatu, hence, C is an A-Mulatu sequence. In this
case, for Equation (1), an = Fn, bn = Ln , and cn = FMn.

This study aims to systematize a new sequence of the Jacobsthal type. By changing the
initial terms, we will define the Jacobsthal–Mulatu sequence {JMn}n≥0, defined by the recurrence
relation

JMn = JMn−1 + 2JMn−2 , n ≥ 2, (2)

with the initial values JM0 = 4 and JM1 = 1. Table 1 presents several terms of Jacobsthal,
Jacobsthal–Lucas, and Jacobsthal–Mulatu numbers, and the respective identification in OEIS [1].

Table 1. First few terms of Jacobsthal, Jacobsthal–Lucas, Jacobsthal–Mulatu sequences.
n 0 1 2 3 4 5 6 7 8 9 10 id OEIS
Jn 0 1 1 3 5 11 21 43 85 171 341 A001045
jn 2 1 5 7 17 31 65 127 257 511 1025 A014551
JMn 4 1 9 11 29 51 109 211 429 851 1709 A344109

Let {hn} be the Horadam sequence defined for all natural numbers n by the second-order
linear recurrence relation hn+1 = −phn + qhn−1, n ≥ 1, where p and q are fixed integers,
and the initial conditions are given by h0 = a and h1 = b. This sequence was introduced by
Horadam [10, 11, 12] and generalizes several well-known sequences whose recurrence relations
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correspond to the characteristic equation x2 + px − q = 0. The Horadam sequence is specified
in the Jacobsthal sequence if we let p = −1; q = 2; a = 0; b = 1. Further general results and
extensions concerning the Horadam sequence can be found in [10, 13].

Our research problem is the determination of properties for the Jacobsthal–Mulatu
sequence analogous to the Jacobsthal sequence and relationships between three sequences:
Jacobsthal, Jacobsthal–Lucas, and Jacobsthal–Mulatu numbers. The sequence that is the subject
of this study is an extension of the Jacobsthal sequence. The remainder of this paper is organized
as follows: In Section 2, we derive the Binet formula for the Jacobsthal–Mulatu numbers and
explore its applications. We begin by reviewing key concepts and results related to Jacobsthal
numbers, establishing initial relationships among the three sequences in the Jacobsthal family.
In Section 3, we establish some identities for the Jacobsthal–Mulatu sequence. The classical
identities are studied. While in Section 4 we focus on obtaining the generating functions for
the Jacobsthal–Mulatu sequence. Specifically, we establish three types: the ordinary generating
function, the exponential generating function, and the Poisson generating function. In Section 5,
we investigate the properties and identities associated with the partial sums of the terms involving
the Jacobsthal–Mulatu sequence, and moreover, the limit of some quotients is presented. Finally,
in Conclusion, some notes on future research are stated.

2. Binet’s Formula and Applications

In this section, we determine the Binet formula for the Jacobsthal–Mulatu numbers and
present some applications. Firstly, we take up some concepts and results relating to Jacobsthal
numbers and present some of the first relationships between these sequences of the Jacobsthal
family.

2.1. Background and preliminary results

The Jacobsthal-type sequence is known to be associated with the characteristic equation

r2 = r + 2 (3)

whose two distinct roots are r1 = 2 and r2 = −1, which play a central role in deriving the
properties of the sequence. For further details on Jacobsthal numbers, see [2, 3, 9, 14, 15, 16].

Lemma 2.1 ([9], Equations (2.3) and (2.4)). Let n ≥ 0. Then, the following hold:

Jn =
rn1 − rn2
r1 − r2

=
2n − (−1)n

3
(4)

and
jn = rn1 + rn2 = 2n + (−1)n . (5)
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Equations (4) and (5), respectively, are Binet’s formula for the Jacobsthal and
Jacobsthal–Lucas sequences. We present a similar result for the Jacobsthal–Mulatu sequence as
follow:

Proposition 2.2 (Binet-like Formula). Let n ≥ 0. Then, the following hold:

JMn =
(1− 4r2)r

n
1 + (4r1 − 1)rn2
r1 − r2

=
5 · 2n + 7 · (−1)n

3
· (6)

Proof. Let r1 and r2 be the distinct roots of Equation (3). We need to find integers c1 and c2 such
that

JMn = c1r
n
1 + c2r

n
2 .

By the initial conditions, JM0 = c1 + c2 = 4

JM1 = c1r1 + c2r2 = 1

which implies that c1 = 1−4r2
r1−r2

and c2 =
4r1−1
r1−r2

. Then,

JMn =
(1− 4r2)r

n
1 + (4r1 − 1)rn2
r1 − r2

.

Since r1 = 2 and r2 = −1, the proof is concluded.

This sequence with the general term 5·2n+7·(−1)n

3
index-linked as A344109 in the OEIS [1]

is connected to the Jacobsthal recurrence and will be referred to as Jacobsthal–Mulatu. However,
we have yet to show that this sequence satisfies Equation (1). Since the Jacobsthal and
Jacobsthal-Lucas sequences are not the main object of study in this work, we will list some
identities involving these sequences, omitting their proofs, which will be necessary for the proof
of properties of the Jacobsthal-Mulatu sequence.

Lemma 2.3 ([9], Equations (2.5), (2.6), (2.10) and (2.11)). Let n ≥ 1. Then, the following hold:

9Jn = 2jn−1 + jn+1 (7)

Jn−1Jn+1 − (Jn)
2 = (−1)n2n−1 (8)

jn−1jn+1 − (jn)
2 = 9(−1)n−12n−1 (9)

and

jn = 2Jn−1 + Jn+1 . (10)
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Lemma 2.4. Let n ≥ 1. Then, the following hold:

9JnJn+1 = j2n+1 + (−1)n+12n (11)

9(Jn)
2 = j2n + (−1)n+12n+1 (12)

Jn+1 jn = J2n+1 + (−1)n2n (13)

Jn jn+1 = J2n+1 − (−1)n2n (14)

jn jn+1 = j2n+1 + (−1)n2n (15)

3(Jn+1 + Jn−1) = 2jn + 2n−1 (16)

and

jn+1 + jn−1 = 6Jn + 2n−1 . (17)

Proof. Using Equations (4) and (5), we have

Jn jn+1 =
rn1 − rn2
r1 − r2

(rn+1
1 + rn+1

2 )

=
1

r1 − r2

[
r2n+1
1 + r2(r1r2)

n − (r1r2)
nr1 − r2n+1

2

]
=

1

r1 − r2

[
r2n+1
1 − (r1r2)

n(r1 − r2)− r2n+1
2

]
=

1

r1 − r2

[
r2n+1
1 − r2n+1

2

]
− (r1r2)

n = J2n+1 − (−1)n2n ,

and then we have obtained Equation (14). Equations (11), (12), (13), (15), (17), and (16) are
obtained in a similar manner.

Afterward, we consider a generalized Jacobsthal sequence {GJn}n≥0 that extends the
classical Jacobsthal sequence by incorporating two arbitrary initial values GJ0 and GJ1. It is defined
as follows:

GJn = GJn−1 + 2GJn−2, for all n ≥ 2,

with the initial conditions GJ0 = a and GJ1 = b, where a and b are arbitrary integers.

Proposition 2.5. Let n ≥ 0 and m ≥ 1. Then, the following hold:

GJn+m = 2Jm−1 ·GJn + Jm ·GJn+1 , (18)

where {Jn}n≥0 is the Jacobsthal sequence.

Proof. The proof is made using the principle of mathematical induction on m. For m = 1 and
m = 1, the identity holds because J0 = 0, J1 = 1, and J2 = 1. Suppose that Equation (18) is
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verified for every value less than or equal to m, for some m ≥ 2. Then,

GJn+m+1 = GJn+m + 2GJn+m−1

= 2Jm−1GJn + JmGJn+1 + 2 · 2Jm−2GJn + 2Jm−1GJn+1

= 2[Jm−1 + 2Jm−2]GJn + [Jm + 2Jm−1]GJn+1

= 2JmGJn + Jm+1GJn+1 .

Therefore, the identity holds for every non-negative integer.

A direct and immediate consequence of Proposition 2.5 is the following corollary.

Corollary 2.6. Let n ≥ 0 and m ≥ 1. Then, the following hold:

Jn+m = 2Jm−1Jn + JmJn+1 (19)

and

jn+m = 2Jm−1jn + Jmjn+1 . (20)

The following auxiliary result involves two generalized Jacobsthal sequences and can be
seen as a version of Equation (18) presented in [4].

Proposition 2.7. For any generalized Jacobsthal sequences {GJn}n≥0 and {HJn}n≥0, that is, both
satisfy (2), the following identity holds:

GJn+mHJn+l −GJnHJn+m+l = (−1)n2n(GJm HJl −GJ0HJm+l). (21)

Proof. Define
In = GJn+mHJn+l −GJnHJn+m+l .

From Equation (18) , since

In = GJn+m HJn+l −GJn HJn+m+l

= (2Jm−1GJn + JmGJn+1)HJn+l −GJn(2Jm−1HJn+l + JmHJn+l+1)

= Jm(GJn+1HJn+l −GJnHJn+l+1)

and

In+1 = (2JmGJn + Jm+1GJn+1)HJn+l+1 −GJn+1(2JmHJn+l + Jm+1HJn+l+1)

= 2Jm(GJn HJn+l+1 −GJn+1HJn+l),

then
In+1 = −2In .

LAJM v. 04 n. 01 (2025) 28



Latin American Journal of Mathematics (ISSN 2965-0798)
Jacobsthal-Mulatu Numbers

Thus,
In = (−1)n2nI0,

and hence
GJn+mHJn+l −GJnHJn+m+l = (−1)n2n(GJmHJl −GJ0HJm+l) .

2.2. Connection of Jacobsthal–Mulatu numbers with Jacobsthal–type numbers

In this subsection, we explore the relationships between Jacobsthal-type sequences and the
Jacobsthal–Mulatu sequence. First, it follows from Binet’s formula that the following result holds:

Proposition 2.8. Let n ≥ 1. Then, the following hold:

JMn = Jn + 8Jn−1 . (22)

Proof. According to Equation (6) and the fact that r1r2 = −2, we have

JMn =
(1− 4r2)r

n
1 − (1− 4r1)r

n
2

r1 − r2
=

rn1 − rn2
r1 − r2

+ 8
rn−1
1 − rn−1

2

r1 − r2
.

Thus, the result follows from Equation (4) .

In a similar way, we have the following result.

Proposition 2.9. Let n ≥ 0. Then, the following hold:

JMn = Jn+1 + jn + (−1)n .

Afterward, we will show that each Jacobsthal–Mulatu number is a linear combination of
Jacobsthal and Jacobsthal–Lucas numbers.

Proposition 2.10. Let n ≥ 0. Then, the following hold:

JMn = 2jn − Jn . (23)

Proof. The proof is given by mathematical induction. Note that

JM0 = 2j0 − J0 = 2 · 2− 0 = 4,

and

JM1 = 2j1 − J1 = 2 · 1− 1 = 1 .
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Suppose that the result is valid for any positive integer less than or equal to n, for some n. Then ,

JMn+1 = JMn + 2JMn−1

= 2jn − Jn + 2(2jn−1 − Jn−1)

= 2(jn + 2jn−1)− (Jn + 2Jn−1)

= 2jn+1 − Jn+1 .

Thus, the result is valid for any non-negative integer.

Therefore, we obtain as follows that each Jacobsthal–Lucas number is the arithmetic mean
Jacobsthal and Jacobsthal–Mulatu numbers:

Corollary 2.11. Let n ≥ 0. Then, the following hold:

2jn = Jn + JMn .

According to Equation (1), Corollary 2.11 shows that the sequence {JMn}n≥0 has suffix
Mulatu.

Another similar result can be obtained. We omit the proof of the following two results for
brevity.

Proposition 2.12. Let n ≥ 0. Then, the following hold:

3(JMn+1 + JMn−1) = 36Jn − 2jn + 5 · 2n−1 .

Proposition 2.13. Let n ≥ 0. Then, the following hold:

JMn+1 + 2JMn−1 = 18Jn − jn . (24)

2.3. Negative subscripts for the Jacobsthal–Mulatu sequence

In this subsection, we extend the definition of the Jacobsthal–Mulatu sequence to negative
subscripts. Using standard techniques for Fibonacci-type sequences, we establish a recurrence
relation for negative subscripts and derive explicit formulas consistent with the properties of the
sequence.

For the Jacobsthal and Jacobsthal–Lucas numbers with negative subscripts, according to
Equation (19) in [15], we have the relations

J−n =
(−1)n+1

2n
Jn (25)

and

j−n =
(−1)n

2n
jn . (26)
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To extend the Jacobsthal–Mulatu sequence to negative subscripts, we use the modified
recurrence relation

2JMn−2 = JMn − JMn−1.

Then, we have the following pattern:

2JM−1 = JM1 − JM0 = −1(−1 + 1.22) = −1(−J1 + J2 · 22) ,
22JM−2 = 2JM0 − 2JM−1 = −1 + 3 · 22 = 1(−J2 + J3 · 22) ,
23JM−3 = 22JM−1 − 22JM−2 = 3− 5 · 22 = −1(−J3 + J4 · 22) .

Proposition 2.14. Let n ≥ 0 an integer. Then, the following hold:

JM−n =
(−1)n

2n
(
22Jn+1 − Jn

)
.

Proof. Let U−n = (−1)n

2n
( 22Jn+1 − Jn) for all integers n ≥ 0. We want to show that Un verifies

the recurrence relation U−n = 2U−(n+2) +U−(n+1) . Indeed,

2U−(n+2) +U−(n+1) = 2
(−1)n+2

2n+2

(
22Jn+3 − Jn+2

)
+

(−1)n+1

2n+1

(
22Jn+2 − Jn+1

)
=

(−1)n

2n+1
2
(
22Jn+1 − Jn

)
= U−n .

Moreover, U−1 = −1
2
(22J2−J1) and U−2 =

1
4
(22J3−J2). So, as {Un}n≥0 satisfies the recurrence

that defines {JMn}n≥0 with the same initial conditions, we conclude that U−n = JM−n.

Another way to express {JMn}n≥0 is through the following result:

Proposition 2.15. Let n ≥ 0. Then, the following hold:

JM−n =
(−1)n

2n
(JMn + 2Jn) . (27)

Proof. Combining Equations (23), (25) and (26), the result follows.

3. Some Properties

In this section, we establish some identities for the Jacobsthal–Mulatu sequence. The
classical identities are studied, and finally, the limit of some quotients is presented.

3.1. First identities for the Jacobsthal–Mulatu sequence

We start with the result that establishes the multiplication formula for two consecutive
terms of the Jacobsthal–Mulatu sequence.

Proposition 3.1. Let n ≥ 0. Then, the following hold:

9JMnJMn+1 = j2n+1 + 24j2n + 26j2n−1 + 35(−1)n2n .

LAJM v. 04 n. 01 (2025) 31



Latin American Journal of Mathematics (ISSN 2965-0798)
Jacobsthal-Mulatu Numbers

Proof. By Equation (22), we have

JMnJMn+1 = JnJn+1 + 23[J2
n + Jn−1Jn+1] + 26Jn−1Jn .

Hence, by Equations (8), (9), (10), (11) and (12) it follows that

9JMnJMn+1 = j2n+1 − (−1)n2n + 239[(−1)n2n−1 + 2(Jn)
2] + 26[j2n−1 + (−1)n2n−1]

= j2n+1 − (−1)n2n + 23[9(−1)n2n−1 + 2(j2n + (−1)n+12n+1)] + 26[j2n−1 + (−1)n2n−1]

= j2n+1 − (−1)n2n + 24j2n + 26j2n−1 + 9(−1)n2n+2 + (−1)n+12n+5 + (−1)n2n+5

= j2n+1 + 24j2n + 26j2n−1 + 35(−1)n2n ,

which proves the result.

Proposition 3.2. For all non-negative integer n, the sequence {JMn}n≥0 satisfies the following
identity:

9JMnJMn+1 = 37j2n+1 − 36J2n+1 + 35(−1)n2n . (28)

Proof. By Equations (11), (13), (14), (15), and (23) we obtain

9JMnJMn+1 = 9(2jn − Jn)(2jn+1 − Jn+1)

= 9[22jnjn+1 − 2jnJn+1 − 2Jnjn+1 + Jn+1Jn]

= 229[j2n+1 + (−1)n2n]− 229J2n+1 + [j2n+1 − (−1)n2n]

= 37j2n+1 − 36J2n+1 + 35(−1)n2n,

which completes the proof.

An immediate consequence of the Proposition 3.2 is the following corollary.
Corollary 3.3. The Jacobsthal–Mulatu sequence satisfies the identity

9JMnJMn+1 = 15JM2n+1 + 35(−1)n2n − 14,

for all non-negative integer n.

Proof. By using the Binet formula for Jacobsthal, Jacobsthal–Lucas and Jacobsthal–Mulatu
sequences, we obtain

37j2n+1 − 36J2n+1 = 25 · 22n+1 − 5 · 7− 14

= 5
(
5 · 22n+1 + 7 · (−1)2n+1

)
− 14

= 15

(
5 · 22n+1 + 7 · (−1)2n+1

3

)
− 14

= 15 · JM2n+1 − 14.

The result follows from Equation (28).
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We present two interesting results that exhibit combinations of certain terms of these
sequences.

Proposition 3.4. The Jacobsthal–Mulatu sequence satisfies the following identities

JMn+m = 2Jm−1JMn + JmJMn+1 . (29)

for any n and m non-negative integers.

Proof. Take GJi = JMi in Equation (18).

Proposition 3.5. Let n and m be integers such that n−m ≥ 0. Then, for the Jacobsthal–Mulatu
sequence {JMn}n≥0, the following identity holds:

2JMn+m = jmJMn + Jm (18Jn − jn) . (30)

Proof. Changing m by −m in Equation (18), and by using Equations (9) and (25), we have

JMn−m =
(−1)m

2m
(Jm+1JMn − JmJMn+1).

Then

JMn+m + 2m(−1)mJMn−m = 2Jm−1JMn + JmJMn+1 + Jm+1JMn − JmJMn+1

= (2Jm−1 + Jm+1)JMn

= jm · JMn

and

JMn+m − 2m(−1)mJMn−m = 2Jm−1JMn + JmJMn+1 − Jm+1JMn + JmJMn+1

= (2Jm−1 − Jm+1)JMn + 2JmJMn+1

= −JmJMn + 2JmJMn+1

= Jm(2JMn−1 − JMn+1) + 2JmJMn+1

= 2JmJMn−1 − JmJMn+1 + 2JmJMn+1

= 2JmJMn−1 + JmJMn+1

= Jm(2JMn−1 + JMn+1) .

By summing the last two equations, we obtain

2JMn+m = jmJMn + Jm(2JMn−1 + JMn+1) .

Using Equation (24), we obtain the result.
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3.2. Some classical identities

The Tagiuri-Vajda identity for the Jacobsthal-Mulatu sequence is presented as follows,
which we get using the previous result.
Proposition 3.6 (Tagiuri-Vajda’s identity). Let n, m and q be natural numbers. Then , the
following hold:

JMn+m · JMn+q − JMn · JMn+m+q = 35(−1)n+12nJmJq . (31)

Proof. Taking GJi = Hi = JMi in Equation (21) , we have

JMn+m · JMn+q − JMn · JMn+m+q = (−1)n2n [JMm · JMq − JM0 · JMm+q]

= (−1)n2n [JMm · JMq − 4JMm+q]

= (−1)n2n [JMm · JMq − 2 · 2JMm+q] .

By Equations (23) and (30), we have

JMn+m · JMn+q − JMn · JMn+m+q = (−1)n2n[JMm · JMq − 2(jq · JMm + Jq(18Jm − jm))]

= (−1)n2n[JMm · JMq − 2jq · JMm − 36JqJm + 2Jqjm]

= (−1)n2n[JMm(JMq − 2jq)− 2Jq(9 · 2Jm − jm)]

= (−1)n2n[−JMmJq − 2Jq(9 · 2Jm − jm)]

= (−1)n2n[−Jq[JMm + 9 · 4Jm − 2jm]]

= (−1)n2n[−Jq[(JMm − 2jm) + 9 · 4Jm]]
= (−1)n2n[−Jq[−Jm + 9 · 4Jm]]
= (−1)n2n[−JmJq[−1 + 9 · 4]]
= 35(−1)n+12nJmJq ,

which establishes the proof.

As a direct consequence of the Tagiuri-Vajda identity, the following results are generalized
to establish d’Ocagne’s identity, Catalan’s identity, and Cassini’s identity specifically for the
Jacobsthal–Mulatu sequence.
Proposition 3.7 (d’Ocagne’s identity). Let h and n be non-negative integer numbers such that
h− n ≥ 0. Then , the following hold:

JMhJMn+1 − JMnJMh+1 = 35(−1)n+12nJh−n .

Proof. Consider m = h− n and q = 1 in Equation (31), then

JMhJMn+1 − JMnJMh+1 = 35(−1)n+12nJh−nJ1

= 35(−1)n+12nJh−n .
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Proposition 3.8 (Catalan’s identity). Let h and n be non-negative integer numbers such that
h− n ≥ 0. Then , the following hold:

JMn+qJMn−q − (JMn)
2 = 35(−1)n+q · 2n−q(Jq)

2 . (32)

Proof. Taking m = −q in Equation (31), we have that

JMn−qJMn+q − JMnJMn = 35(−1)n+12nJ−qJq .

As J−q = ((−1)q+1/2q)Jq, we have

JMn+qJMn−q − (JMn)
2 = 35(−1)n+q+22n−q(Jq)

2 .

As a consequence of Catalan’s identity, since J1 = 1 and by doing q = 1 in Equation (32),
we have the following result.

Corollary 3.9 (Cassini-Simson’s identity). For all non-negative integer n, we have

(JMn)
2 − JMn+1JMn−1 = 35(−1)n2n−1 .

Other consequence is the Cassini-Simson identity for subscripts even:

Corollary 3.10. For all non-negative integer n, we have

(JM2n)
2 − JM2n+1JM2n−1 = 35 · 22n−1 .

Now, we present the convolution identity for the Jacobsthal–Mulatu sequence.

Proposition 3.11 (Convolution’s identity). Let m and n be non-negative integer numbers . Then,
the Jacobsthal–Mulatu sequence {JMn}n≥0 satisfies the following identity:

JMm+n = 2JMm−1JMn + JMmJMn+1 − 23JMm+n−1 .
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Proof. By Equations (22) and (19), it follows that

2JMm−1JMn + JMmJMn+1

= 2(Jm−1 + 23Jm−2)(Jn + 23Jn−1) + (Jm + 23Jm−1)(Jn+1 + 23Jn)

= 2Jm−1Jn + 2 · 23Jm−1Jn−1 + 2 · 23Jm−2Jn + 2 · 22·3Jm−2Jn−1

+JmJn+1 + 23JmJn + 23Jm−1Jn+1 + 22·3Jm−1Jn

= 2Jm−1Jn + JmJn+1 + 23(2Jm−1Jn−1 + JmJn)

+23(2Jm−2Jn + Jm−1Jn+1) + 22·3(2Jm−2Jn−1 + Jm−1Jn)

= Jm+n + 23Jm+n−1 + 23(Jm+n−1 + 23Jm+n−2)

= JMm+n + 23JMm+n−1 .

The next result follows directly from Catalan’s identity.

Proposition 3.12 (Gelin-Cesaro’s identity). The Jacobsthal–Mulatu sequence {JMn}n≥0 satisfies
the following identity:

JMn+2JMn+1JMn−1JMn−2 − (JMn)
4 = 35 · 2n−2

(
(−1)n+1(JMn)

2 − 2(35)2n−2
)
.

Proof. Using Equation (32) for q = 1 we have

JMn+1JMn−1 − (JMn)
2 = 35(−1)n+1 · 2n−1(J1)

2 , (33)

and by (32) for q = 2 we have

JMn+2JMn−2 − (JMn)
2 = 35(−1)n+2 · 2n−2(J2)

2 . (34)

Since J1 = J2 = 1, and combining Equation s (33) and (34), we obtain

JMn+2JMn+1JMn−1JMn−2 − (JMn)
4

=
[
(JMn)

2 + 35(−1)n+22n−2(J2)
2
] [
(JMn)

2 + 35(−1)n+12n−1(J1)
2
]
− (JMn)

4

=
[
(JMn)

2 + 35(−1)n2n−2
] [

(JMn)
2 − 35(−1)n2n−1

]
− (JMn)

4

= (JMn)
4 − 35(−1)n2n−1(JMn)

2 + 35(−1)n2n−2(JMn)
2 − (35)2(−1)2n22n−3 − (JMn)

4

= −35(−1)n2n−2(JMn)
2 − (35)222n−3

= −35(−1)n2n−2(JMn)
2 − 2((35)2n−2)2

= 35 · 2n−2
(
(−1)n+1(JMn)

2 − 2(35)2n−2
)
.
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4. Generating Functions

In this section, we derive the generating functions for the Jacobsthal–Mulatu sequence.
More specifically, we present three types of generating functions for the Jacobsthal–Mulatu
sequence: the ordinary generating function, the exponential generating function, and the Poisson
generating function.

It is well known that the ordinary generating function for a sequence {an}n≥0, denoted as
Gan(x), is defined as:

Gan(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · ·+ anx

n + · · · . (35)

According to Equations (2.1) and (2.2) in [9], the ordinary generating function of
Jacobsthal and Jacobsthal–Lucas sequences has the following form

GJn(x) =
x

1− x− 2x2
and Gjn(x) =

2− x

1− x− 2x2
.

This means that we have:

GJn(x) = x+ x2 + 3x3 + 5x4 + 11x5 + 21x6 + 43x7 + 85x8 + 171x9 + 351x10 + · · · ,

and

Gjn(x) = 2 + x+ 5x2 + 7x3 + 17x4 + 31x5 + 65x6 + 127x7 + 257x8 + 511x9 + · · · .

The following result provides the explicit form of the ordinary generating function for the
Jacobsthal–Mulatu sequence.
Proposition 4.1. The ordinary generating function for the Jacobsthal–Mulatu sequence, denoted
by GJMn(x), is given by

GJMn(x) =
4− 3x

1− x− 2x2
.

Proof. According to Equation (35), the ordinary generating function for the Jacobsthal–Mulatu
sequence is given by

GJMn(x) = JM0 + JM1x+ JM2x
2 + JM3x

3 + · · ·+ JMnx
n + · · · .

Using the relationships xGJMn(x) and 2x2GJMn(x) and the fact that JM0 = 4 and JM1 = 1, we
derive the following results:

GJMn(x)(1− x− 2x2) = JM0 + [JM1 − JM0]x ,

and then
GJMn(x) =

4− 3x

1− x− 2x2
,
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since 1− x− 2x2 ̸= 0, this completes the proof.

The exponential generating function Ean(x) for a sequence {an}n≥0 is represented as a
power series given by:

Ean(x) = a0 + a1x+
a2x

2

2!
+ · · ·+ anx

n

n!
+ · · · =

∞∑
n=0

anx
n

n!
.

In the next result, we consider the case where an = JMn and apply the Binet formula for
the Jacobsthal–Mulatu sequence. By doing so, we derive its exponential generating function.

Proposition 4.2. The exponential generating function for the Jacobsthal–Mulatu sequence
{JMn}n≥0 is

EJMn(x) =
∞∑
n=0

JMn
xn

n!
=

5e2x + 7e−x

3
.

The Poisson generating function Pan(x) for a sequence {an}n≥0 is defined as:

Pan(x) =
∞∑
n=0

anx
n

n!
e−x.

This function encodes the sequence {an}n≥0 in terms of the parameter x. A significant relationship
exists between the exponential generating function Ean(x) and the Poisson generating function
Pan(x), given by:

Pan(x) = e−xEan(x).

This relationship establishes a direct connection between the two generating functions.

As a particular case, considering the exponential generating function for the
Jacobsthal–Mulatu sequence given in Proposition 4.2, we obtain the following result.

Corollary 4.3. The Poisson generating function for the Jacobsthal–Mulatu sequence {JMn}n≥0

is:

PJMn(x) =
5ex + 7e−2x

3
.

5. Sum and Ratio

In this section, firstly we explore the properties and identities related to the partial sums of
terms of the Jacobsthal–Mulatu sequence. Moreover, for any positive integers n and t, the ratio
between the terms an+t and an is given by qn+t = an+t

an
. This analysis helps to understand the

growing and asymptotic pattern of the sequence.

5.1. A finite sum involving the Jacobsthal–Mulatu numbers

In this subsection, we investigate the properties and identities associated with the finite
sums of the terms of the Jacobsthal–Mulatu sequence.
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The sum of the first n+ 1 terms of this sequence is expressed as:

n∑
k=0

JMk = JM0 + JM1 + JM2 + · · ·+ JMn−1 + JMn .

We begin by presenting three key results concerning the finite sums of terms of the
Jacobsthal–Mulatu sequence.

First, the sum of the first n+ 1 terms.

Proposition 5.1. For all non-negative integer n, the following hold:

n∑
k=0

JMk =
1

2
(JMn+2 − 1) . (36)

Proof. According to Equation (2) , we have the following equations:

2JM0 = JM2 − JM1,

2JM1 = JM3 − JM2,
...

2JMn−1 = JMn+1 − JMn,

and

2JMn = JMn+2 − JMn+1 .

By adding both sides of these equations, we have

2
n∑

k=0

JMk = JMn+2 − JM1 .

Since JM1 = 1, we conclude the result.

The sum involving the terms with even indexes of the Jacobsthal–Mulatu sequence can be
expressed as:

Proposition 5.2. For all non-negative integers n, the following hold:

n
2∑

k=0

JM2k =
1

3

(
JMn+2 + 3 +

7

2
n

)
, if n is even , (37)

and

n−1
2∑

k=0

JM2k =
1

3

(
JMn+1 + 3 +

7

2
(n− 1)

)
, if n is odd . (38)
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Proof. If n is even, then we can write n = 2m for some integer m. Then, by using the Binet
formula, we have that

S = JM0 + JM2 + · · ·+ JM2m

=
1

3

[(
5 + 5 · 22 + 5 · 24 + · · ·+ 5 · 22m

)
+ (7 + 7 + · · ·+ 7)

]
=

1

9

[
5
(
22m+2 − 1

)
+ 21(m+ 1)

]
=

1

9

[
5 · 22m+2 − 5 + 21 + 21m

]
=

1

9
[3JM2m+2 + 9 + 21m]

=
1

3
[JM2m+2 + 3 + 7m] .

If we consider n odd, then the result follows in a similar way.

The sum of the terms with odd indexes of the Jacobsthal–Mulatu sequence is given as
follows:

Proposition 5.3. For all non-negative integer n, the following hold:

n
2∑

k=1

JM2k−1 =
1

6
(JMn+2 − 9− 7n) , if n is even , (39)

and

n−1
2∑

k=0

JM2k+1 =
1

6
(3JMn+2 − 2JMn+1 − 9− 7(n− 1)) , if n is odd . (40)

Proof. Suppose n is even. Then, from Equations (36) and (37) , it follows that

6

n
2∑

k=1

JM2k−1 = 6
n∑

k=0

JMk − 6

n
2∑

k=0

JM2k

= 3(JMn+2 − 1)− 2

(
JMn+2 + 3 +

7

2
n

)
= 3JMn+2 − 3− 2JMn+2 − 6− 7n

= JMn+2 − 9− 7n .
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If n is odd, then by Equations (36) and (38), we have

6

n−1
2∑

k=0

JM2k+1 = 6
n∑

k=0

JMk − 6

n−1
2∑

k=0

JM2k

= 3(JMn+2 − 1)− 2

(
JMn+1 + 3 +

7

2
(n− 1)

)
= 3JMn+2 − 3− 2JMn+1 − 6− 7n+ 7

= 3JMn+2 − 2JMn+1 − 9− 7(n− 1) .

An immediate consequence from previous results is the result presented below. This
naturally arises from the established relationships and further reinforces the conclusions derived
from the Propositions 5.2 and 5.3.

Proposition 5.4. For all non-negative integer m, we have the following identities:

(a)
m∑
k=0

(−1)kJMk =
1

6
(4JMm+1 − 3JMm+2 + 14(m− 1) + 15), if m is odd,

and

(b)
m∑
k=0

(−1)kJMk =
1

6
[JMm+2 + 2 · 7m+ 15] , if m is even.

Proof. (a) First consider that m = 2n+ 1 is odd . Thus,

2n+1∑
k=0

(−1)kJMk = JM0 − JM1 + JM2 − JM3 + · · ·+ JM2n − JM2n+1

= (JM0 + JM2 + · · ·+ JM2n)− (JM1 + JM3 + · · ·+ JM2n+1)

=
n∑

k=0

JM2k −
n∑

k=0

JM2k+1 .

According to Equations (38) and (40), it follows that:

m∑
k=0

(−1)kJMk =
1

3

(
JMm+1 + 3 +

7

2
(m− 1)

)
− 1

6
(3JMm+2 − 2JMM+1 − 9− 7(m− 1))

=
1

3

(
JMm+1 + 3 +

7

2
(m− 1)− 1

2
(3JMm+2 − 2JMm+1 − 9− 7(m− 1))

)
=

1

6
(2JMm+1 + 6 + 7(m− 1)− (3JMm+2 − 2JMm+1 − 9− 7(m− 1)))

=
1

6
(4JMm+1 − 3JMm+2 + 14(m− 1) + 15) .
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(b) If m is even, consider m = 2n and using Equations (37) and (39), it follows that:

6
2n∑
k=0

(−1)kJMk = 6(JM0 − JM1 + JM2 − . . .− JM2n−1 + JM2n)

= 6

(
n∑

k=0

JM2k −
n∑

k=1

JM2k−1

)
= 2 (JM2n+2 + 3 + 7n)− 1(JM2n+2 − 9− 14n)

= JM2n+2 + 28n+ 15 .

5.2. Some limit identities

The quotient between two successive terms of a sequence, {an}n≥0, is given by qn =

an+1/an, where qn is the ratio of the terms an+1 and an. For example, in the classical Jacobsthal
sequence {Jn}n≥0, qn = Jn+1/Jn, and for sufficiently large n, qn converges to the positive root of
Equation (3), the root r1 = 2.

The first result shows that the quotient qn for the Jacobsthal–Mulatu sequence {JMn}n≥0

also converges to r1 when n goes to infinity.
Proposition 5.5. If JMn is the n-th term of the Jacobsthal–Mulatu sequence, then

lim
n→∞

JMn+l

JMn

= (r1)
l (41)

and
lim
n→∞

JM−(n+l)

JM−n

= (r2)
l (42)

where r1 = 2 and r2 = −1 are the solutions of Equation (3), and n and l are any non-negative
integers.

Proof. According to Binet’s formula in Equation (6), we have that

JMn+l

JMn

= (r1)
l
(1− 4r2)− (1− 4r1)(

r2
r1
)n+l

(1− 4r2)− (1− 4r1)(
r2
r1
)n

.

Since |r2/r1| < 1, it follows that (r2/r1)n → 0 when n → ∞. Thus,

lim
n→∞

JMn+l

JMn

= (r1)
l 1− 4r2
1− 4r2

= (r1)
l ,

and hence Equation (41) follows.

Using the Equation (27), we can write

JM−(n+l)

JM−n

=
(−1)n+l

2n+l (JMn+l + 2Jn+l)
(−1)n

2n
(JMn + 2Jn)

=
(−1)l

2l
JMn+l + 2Jn+l

JMn + 2Jn
.
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It follows from Binet’s formula that

JMn+l + 2Jn+l

JMn + 2Jn
= (r1)

l
(1− 4r2)− (1− 4r1)(

r2
r1
)n+l + 2(1− ( r2

r1
)n+l)

(1− 4r2)− (1− 4r1)(
r2
r1
)n + 2(1− ( r2

r1
)n)

.

Therefore,

lim
n→∞

[
JMn+l + 2Jn+l

JMn + 2Jn

]
= (r1)

l lim
n→∞

(1− 4r2)− (1− 4r1)(
r2
r1
)n+l + 2(1− ( r2

r1
)n+l)

(1− 4r2)− (1− 4r1)(
r2
r1
)n + 2(1− ( r2

r1
)n)

= (r1)
l (1− 4r2) + 2

(1− 4r2) + 2
= (r1)

l = 2l ,

that concludes the proof since r1 = 2 and r2 = −1.

In what follows, we can immediately establish the following result using fundamental tools
from the calculus of limits, along with Equations (41) and (42).
Corollary 5.6. If JMn is the n-th term of the Jacobsthal–Mulatu sequence, then

lim
n→∞

JMn

JMn+l

=

(
1

r1

)l

and
lim
n→∞

JM−n

JM−(n+l)

= (r2)
l

where r1 = 2 and r2 = −1 are solutions of Equation (3), and n and l are any non-negative
integers.

6. Conclusion

The Jacobsthal sequence has some other sequences as variations that have the same
recurrence, the most prominent of which is the Jacobsthal-Lucas sequence. In this article, we
present the Jacobsthal-Mulatu numbers by combining the Jacobsthal recurrence and modifying
the initial terms of the Jacobsthal sequence to 4 and 1. This work was motivated by the aim of
establishing the existence of a Jacobsthal-type sequence that exhibits properties analogous to those
of the Fibonacci-Mulatu sequence, and its connections to both the Fibonacci and Fibonacci-Lucas
sequence. To our surprise, it is the numerical sequence A344109 in OEIS [1]. Thus, this
investigation aimed to introduce the Jacobsthal-Mulatu sequence and display some connections
with the Jacobsthal and Jacobsthal-Lucas sequences, investigating several of their fundamental
properties. Additionally, the generating functions and Binet formulas were provided, as well as,
some properties of these sequences were established. Some applications of second, third and
fourth order sequences are listed in Horadam [17], in particular, the Jacobsthal sequence has
application to special matrices, while third order Jacobsthal numbers and Tribonacci numbers
to quaternions. In future work, we plan to explore a generalization of the Jacobsthal sequence,
defined by setting the initial terms as 2k and 1, which unifies and extends both the Jacobsthal–Lucas
and Jacobsthal–Mulatu sequences, a matrix approach to this sequence, as well as a combinatorial
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model of the Jacobsthal-Mulatu sequence, in connection with the Jacobsthal or Jacobsthal-Lucas
sequences
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