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Abstract

In this article, we present two new theorems relating to the upper bounds of specific two-
dimensional integral inequalities. The first theorem is based on the maximums of the ratios of
the two variables, while the second is based on the minimums. The obtained bounds are quite
manageable, with constant factors defined by simple integrals. Complete proofs are provided
for the sake of rigor. To illustrate the scope and implications of these results, we present several
examples, some of which focus on the standard beta and gamma functions.

Keywords: Two-dimensional integral inequalities; Hardy-Hilbert-type integral inequalities; beta
function; gamma function.

MSC2020: 26D15, 33E20

1 Introduction

There is a wide variety of integral inequalities. These powerful tools can be used to estimate
integral values, bound functions and analyse the behavior of solutions to differential equations.
In two dimensions, the most popular are the Hardy-Hilbert type integral inequalities. Numerous
modifications and generalizations of these inequalities have been developed over time. See, for
example, [4, 2,13, 14]. Certain modified Hardy-Hilbert-type integral inequalities involve minimums
or maximums of the variables or certain transformations of these variables. These formulations allow
for more flexible and precise characterizations of functional relationships, particularly in settings
where asymmetry or variable dominance plays a significant role. They have inspired a substantial
and continually expanding body of literature. See, for example, [12,5,1, 6, 8,9, 10, 11, 7, 3].

In this article, we make a contribution to the study of two-dimensional integral inequalities
by presenting two new theorems. The first of these is innovative in that it depends on certain
maximums of the ratios of the variables, specifically
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where x and y denote the two main variables. It also depends on three functions: f, g and S. The
first two are the main functions of interest, while the third, S, is an auxiliary function that can be
adjusted according to the mathematical context. The second theorem presents an analogous result
involving the corresponding minimumes:

It still depends on f and g, as well as an auxiliary function denoted T'.

These theorems, which involve various minimum-maximum ratios, are motivated by their deep
connections to analysis, operator theory, and the theory of mathematical inequalities. They provide
effective tools for estimating integral operators and for establishing precise analytical bounds.
Notably, the resulting upper bounds in both theorems are mathematically tractable and can be
expressed through simple weighted integral norms with explicit constant factors. These constants
are defined in terms of the integrals of the auxiliary functions S and T. The proofs make use of
various integral techniques, including the Holder integral inequality, the Chasles integral relation,
the Fubini-Tonelli integral theorem and changes of variables. To illustrate the scope and implications
of our results, we present examples, particularly those connected to the gamma and beta functions.
These examples demonstrates the versatility of the established inequalities in capturing a wide
range of integral behaviors, particularly in contexts where classical special functions play a central
role.

The remainder of the article is organized as follows: The first and second theorems are the main
subject of Sections 2 and 3, respectively. Section 4 provides a conclusion.

2 First theorem

2.1 Statement and proof

A general and new type of Hardy-Hilbert integral inequality is stated in the theorem below.

Theorem 2.1. Letp >1,9=p/(p-1), f,§: (0, +00) — (0, +00) be two functions, and S : (1, +o0) —
(0, +00) be a function. Then we have

+00 +00 xz 1/p yZ 1/q x Y
/0 /0 [max (;,1)} [max (;,1)] S (max (;,;))f(x)g(y)dxdy
+00 1/p +o0 1/q
/ xf? (x)dx] [ / ygq(y)dy] ,
0 0

<Q

where

Q= 2/1+°° S(z)dz, (1)

provided that the three integrals composing the upper bounds converge.

Proof of Theorem 2.1. Using a suitable decomposition of the integrand that exploits 1/p + 1/ =1
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and applying the Holder integral inequality to the exponents p and g, we get
+00 +00 2 1/P 2 1/11
o O T e
+00 +00 2 1/p
s o
0 0 Yy y x

2 1/q
v XY o0
X max(xz,l)S(max(y,x))g (y)} dxdy
< AVPBY4, )
where
+0o0 +0o0 x2 x y
A= / / max (—,1)5 (max (—,—)) P(x)dxd
0 0 y? y x / /
and

+00 +00 2
_ v X YY)
B—/O /0 max(xZ,l)S(max(y,x))g (y)dxdy.

Let us study the exact expressions of A and B in turn.
Concerning A, the Fubini-Tonelli integral theorem gives

[ oo x?2 Xy
A= /0 fP(x) [/0 max (;,1) S (max (?, ;)) dy] dx.

For the central integral, using the Chasles integral relation, the definition of the maximum, and the
changes of variables u = x/y and v = y/x, we have

+00 2
/ max (x—z, 1) S (max (i, z)) dy
0 Yy y x
X 2 +00 2
ool o ol
0 y y x x y y x
xxz x +00 y
[ s [ s@a
+0o0 +00 +00
x/ S(u)du+x/ S(v)dv =2x/ S(z)dz = Qux,
1 1 1

where Q) is given by Equation (1).
We therefore have

A=/O+mf’7(x)><Qxdx=Q/0+oo x fP(x)dx, 3)

Concerning B, we proceed in a similar way. The Fubini-Tonelli integral theorem gives

+00 +00 2
B = /0 g (y) [/0 max (%, 1) S (max (g, %)) dx] dy.
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For the central integral, using the Chasles integral relation, the definition of the maximum, and the
changes of variables u = x/y and v = y/x, we have

+o00 2
/ max (y—,l)S (max (f,y))dx
0 x2 y x
y 2 +o0 2
:/ max (y—z,l)S(max (f,%))dx+/ max (y—z,l)S (max (f,z))dx
0 x Yy x y x v ox
Yy 4,2 +00
=/ y—ZS(z)dx+/ S(E)dx
0o X X y Y
+00 +00 +oo
= y/ S(v)dv + y/ S(u)du = Zy/ S(z)dz = Qy.
1 1 1

We therefore have

- - q — e q
B /0 g1(y) x Qydy = Q /O y8(y)dy. (4)

It follows from Equations (2), (3) and (4),and 1/p +1/q = 1 that

+00 +00 2 1/p 2 1/q
/0 /0 [max(%,l)} [max(%,l)] S(max(?%))f(x)g(y)dxdy

1/p +00 1/q
af Xf”(x)dx] [Q I yg%y)dy]

400 1/p +00 1/q
:Q[/O xf’”(x)dx] [/O ygq(y)dy] :

This completes the proof of Theorem 2.1. o

<

To the best of our knowledge, this theorem constitutes a new addition to the existing literature
on this topic. In a sense, it completes the results in [12, 5, 1, 6, 8, 9, 10, 11, 7, 3]. The auxiliary
function S, which defines the constant factor Q, introduces an additional level of flexibility that we
will demonstrate with examples in the next subsection.

Although the constant factor ) has not been proven to be optimal, it is a serious candidate since
it is obtained with the fewest possible steps in the inequalities. A rigorous proof of its optimality
remains an open problem.

Let us state an important consequence of the theorem. Using a basic property of the maximum,

for any a,y > 0, we have
2 1/p 2
[max (X—Z,l)] [max (y—2,1)
y X
This and Theorem 2.1 give
+00 +00
/ / S (max (i, Z)) f(x)g(y)dxdy
0 0 y X

oo oo 1/ 1/g
< ‘/0 /0 [max (;_2,1)] ’ [max (Z—i,l)] S (max (g,%))f(x)g(y)dxdy
+0oo 1/p +00 1/q
/ *f p(")d"] [ / yg" (y)dy] -
0 0

1/q
> 1.

<Q
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We thus have derived a simple upper bound for the following general two-dimensional integral:

/ +°°/ (max( ))f(x)g(y)dxdy.

This also constitutes a new contribution to the article.

2.2 Examples

Four examples of new integral inequalities based on Theorem 2.1 are presented below. Some of
these involve the standard beta and gamma functions.

Example 1: If we take S(x) = x7#, x € (1, +o0), with B > 1, then Theorem 2.1 gives

+oo  ptoo 1/ 1/q B

T T I
1/p +00 1/q

[ Xf”(x)dx] [ i yg%y)dy] ,

0 0

+00 +00 5 2
Q:Z/ S(z)dz:Z/ zPdz = ——.
1 1 p-1
Example 2: If we take S(x) = e™%*, x € (1, +00), with @ > 0, then Theorem 2.1 gives
+00 +00 2 1/p yZ 1/q
/ / [max( > )] [max( 2,1)] e~ XYY/ £(x) g (y)dxdy
x

1/p +00 1/q
[ xrm| | [ s

+00 +00 2
Q= 2/ S(z)dz = 2/ e Ydz = —e™“.
1 1 a

Example 3: If we take S(x) = x™777/(x = 1)77, x € (1, +0), with y, T > 0, then Theorem 2.1 gives

+00  p oo 2 1/p 2 1/q y-
y [max (x/y, y/x)]”
p , dxd
/ / [max( 2 )] [max(xz 1)] [max(x/y,y/x)—l] f(X)g(y) xy

1/p +00 1/q
I xf”(x)dx] [ i gﬁ(y)dy] ,
0 0

where, by the change of variables w = 1/z,

<Q

where

<Q

where

<Q

+00 +00 Z~V-T 1
Q= 2/ S(z)dz = 2/ ————dz = 2/ 0w (1 - w)'dw = 2B(1, y),
1 1 (z=-D7 0
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and B(t, y) denotes the standard beta function at 7 and y. Written in full, the inequality
becomes

+00 +00 x2 1/p 2 1/q YT
y [max (x/y, y/x)]
/ ./ [max ( 2’ )} [max ( 2’ 1)] [max (x/y, y/x) - 1]1_yf(x)g(y)dxdy

+00 1/?? +00 1/'7
< 2B(t,y) [ /0 Xf”(X)dx] [ /0 ygq(y)dy] :

Example 4: If we take S(x) = ¢!~ /(x — 1)1, x € (1, +o0), with A > 0, then Theorem 2.1 gives

oo  p+oo x2 1/p y /g 1
/0 /0 [max(?,l)] [max(xz,l)] [max (x/y, y/x) - 11"

y e1—max(x/y/y/x)f(X)g(y)dxdy

+o00 1/p +o0 1/q
/ xf”(x)dx] [ i ygﬂ(y)dy] ,
0 0

where, by the change of variables w =z -1,

+00 +00 1 +00
Q= 2/ S(z)dz = 2/ —Mel'zdz = 2/ w' e ™ dw = 2T (A),
1 1 (z-DF 0

and I'(1) denotes the standard gamma function at A. Written in full, the inequality becomes

400 ptoo 2 1/p ]/2 1q 1
/0 /0 [max(?,l)] [max(;,l)] [max (x/y,y/x) - 1"

x el ML £ () g (y)dxdy
oo 1/p +o0 1/q
2T(A P(x)d "Wy
. ()[/0 xf(x)x] UO yg(y)y]

3 Second theorem

<Q

3.1 Statement and proof

The theorem below states a new and general type of Hardy-Hilbert integral inequality. It can be
presented as the minimum version of Theorem 2.1. Compared to this result, the constant factor is
redefined.

Theorem 3.1. Letp >1,q=p/(p-1), f, g : (0,4+00) — (0, +00) be two functions, and T : (0,1) —
(0, +00) be a function. Then we have

+00 +00 / 1/‘1
L o ]l s
1/p 00 1/q
<E [‘/0 xf”(x)dx] [./o ygq(y)dy] ,
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where

1
E= 2‘/0 T(z)dz, (5)

provided that the three integrals composing the upper bounds converge.

Proof of Theorem 3.1. Using a suitable decomposition of the integrand that exploits 1/p + 1/ =1
and applying the Holder integral inequality to the exponents p and g, we get

+00 +00 2 1/p 2 1/q
R R e
~ +00 +00 . x2 ) Xy 1/p
= ./0 /0 [mm (?,l)T(mm (?,;))f’”(x)]

2 1/q
Y AN
mm(xz,l)T(mm(y,x))g (y)] dxdy

< clrpla, (6)

+00 +0c0 2
. . Y
C=/ / mm(x—,l)T(mm(i,—)) P(x)dxd
0 0 y? y x frxdxdy
+00 +00 2
- (L N R AN
D —‘/0 /0 mm(xz,l)T(mm(y,x))g (y)dxdy.

Let us study the exact expressions of C and D in turn.
Concerning C, the Fubini-Tonelli integral theorem gives

+00 +o00 2
C :/0 fP(x) [/0 min (%,1)T(min (g,%)) dy] dx.

For the central integral, using the Chasles integral relation, the definition of the minimum, and the
changes of variables u = x/y and v = y/x, we have

+00 2
/ min (x—Z,l)T(min (E,%))dy
0 y y x

X 2 +00 2

= / min (x—z,l)T(min (E,z))dy+/ min (x—z,l)T(min (E,z))dy
0 y y x x y y x
B X z +00 x_2 E
_/0 T(x)dy+/x sz(y)dy
1 1 1

= x/ T(v)dv + x/ T(u)du = Zx/ T(z)dz = Ex,

0 0 0

where E is given by Equation (5).

X

where

and
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We therefore have

C= ‘/0+Oof”(x)x8xdx = E/OJroo x fP(x)dx. (7)

Concerning D, we proceed in a similar way. The Fubini-Tonelli integral theorem gives

+00 +00 2
D :/ g(y) [/ min (y—z,l)T(min (f,z))dx] dy.
0 0 x y x
For the central integral, using the Chasles integral relation, the definition of the minimum, and the
changes of variables u = x/y and v = y/x, we have

+00 2
/ min (y—z,l)T(min (E,g))dx
0 X y x
y 2 +00 2
= / min (y—z,l)T(min (E,%))dx+/ min (y—z,l)T(min (f,g)) dx
0 X y X y X y x
y +00 2
:/ T(f)dx+/ y—z (Z)dx
0 y y X X
1 1 1
= y/ T(u)du + y/ T(v)dov = Zy/ T(z)dz = By.
0 0 0

We therefore have

+00 +oo
D= /0 §1(y) x BEydy = & /0 yg(y)dy. (8)

It follows from Equations (6), (7) and (8), and 1/p + 1/g =1 that
B i N ' v y? 1 . [x Y
/0 /o [mm (?,1)] [mm (;,1)} T (mm (;,;))f(x)g(y)dxdy
+00 1/p +00 1/q
=/ fo(x)dx] [: / ygq(y)dy]

+00 1/p +oo /g
) [ / xf ”(x)dx] [ / yg' (y)dy] :
0 0

This completes the proof of Theorem 3.1. m|

IA

Like Theorem 2.1, this theorem is a new addition to the existing literature on this topic. The
auxiliary function T, which defines the constant factor =, introduces an additional level of flexibility
that will be illustrated with examples in the next subsection.

Although the constant factor Z has not been proven to be optimal, it is a serious candidate since
it is obtained with the fewest possible steps in the inequalities.

3.2 Examples

Four examples of new integral inequalities based on Theorem 3.1 are presented below. Some of
these involve the standard beta and gamma functions.
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Example 1: If we take T(x) = x7, x € (0, 1), with > —1, then Theorem 3.1 gives

+00 +00 2 1/p 2 1/q n
o g S e
1/p o0 1/q
/ xfp(x)dx] [/ gq(y)dy} ,
0 0

1 1 2
5:2/ T(z)dz:Z/ Zldz = ——.
0 0 n+1

Example 2: If we take T(x) = log(1/x), x € (0,1), noting that 1/min(x/y, y/x) = max(x/y, y/x),
then Theorem 3.1 gives

+00 +00 1/ 1/q
[ o] o] o)
+00 1/p +00 1/q
<E [ /0 xf? (x)dX] [ /O ygq(y)dy] ,

1 1
E= 2/0 T(z)dz = 2/0 [-log(z)]dz =

We thus get the elegant inequality

A e v e
/O xf¥ (x)dx]l/p [ /0 - yg' (y)dy]l/q :

Example 3: If we take T(x) = x71(1 — x)*71, x € (0, 1), with 0, & > 0, then Theorem 3.1 gives

e+ I ()] n(z:2)”

-1
1- mm(g %)] f(x)g(y)dxdy

+00 1/p +oo 1/q
/ xf”(x)dx] [ / y8" (y)dy] /
0 0

<XH

where

where

<2

<E

where

1 1
== 2/ T(z)dz = 2/ 29711 - 2)57'dz = 2B(6, &).
0 0



Latin American Journal of Mathematics, Vol. 5, No. 1, 2026, pp. 1-11

Written in full, the inequality becomes

+00 +00 1/ 1/q -1
[ ool ] el
&-1
= )] F()g(y)dxdy

1—min( ,
Y

+00 1/p +o0 1/q
<2B(6, &) [ | Xf”(x)dx] [ | ygw)dy] -

Example 4: If we take T(x) = x V" 1e!"1/*/(1 - x)17?, x € (0, 1), with v > 0, then Theorem 3.1 gives

oo oo . x2 Up . yz 1 [min(x/y,y/x)]‘”_l 1-max(x/y,y/x)
T A e | e o I e

+00 1/p +00 1/q
<E /O xf”(X)dx] [ /0 ygq(y)dy] ,

where, by the change of variablesw =1/z -1,

1 1 Z—U—l +00
E= 2/ T(z)dz = 2/ —131_1/de = 2/ w' e dw = 2T (v).
0 o (1=z)v 0

Written in full, the inequality becomes

+00 +00 . xz 1/p ' yz 1/q [min(x/y, y/x)]—v—l 1emax(x/y,5/%)
L [mm (? 1)] [mm (F 1)] [0 —minGe/y, g/
+00 1/p +00 /g
< 2T'(v) [ /0 xf? (x)dx] [ /0 yg' (y)dy] :

4 Conclusion

X

RI<

In conclusion, we have established new contributions to the fields of integral inequalities by
determining manageable upper bounds for the two following two-dimensional integrals:

+00 +00 2 1/p 2 1/q

o S R e
+00 +00 2 1/p 2 1/q

/0 /0 [min (%, 1)] [min (%, 1)] T (min (g, %)) f(x)g(y)dxdy.

Several examples demonstrate the flexibility of these results, which depend on the different functions
chosen for S and T. Two possible extensions of this work would be to study other minimums-
maximums versions of these integrals and investigate the optimality of the upper bound obtained.
We could also consider three-dimensional variations. These topics will be covered in future articles.

and
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