Introduction to Local Euler Obstruction: From Platonic Solids to Determinantal Varieties
DOI:
https://doi.org/10.14244/lajm.v4i1.37Keywords:
teoria de obstrução, variedade singular, campo de vetor, índiceAbstract
The local Euler obstruction was initially defined by MacPherson to address the Deligne and Grothendieck conjecture regarding the existence and uniqueness of Chern classes for singular algebraic varieties. In the context of indices of vector fields, Brasselet and Schwartz characterized this invariant, an approach we will follow in this text. Based on this definition, we also present the Euler obstruction of a function and the Euler obstruction of a map.
References
[1] MacPherson R. Chern Classes for Singular Algebraic Varieties. Annals of Mathematics. 1974;100(2):423-32.
[2] Schwartz MH. Classes Caractéristiques Définies par une Stratification d’une Variété Analytique Complexe. CR Acad Sci Paris. 1965;260:3262-4.
[3] Brasselet JP, Schwartz MH. Sur les classes de Chern d’un ensemble analytique complexe, caractéristique d’Euler–Poincaré. Astérisque. 1981;82:93-147.
[4] Grulha NG Jr. Obstrução de Euler de Aplicações Analíticas [Tese (Doutorado em Matemática)]. São Paulo: Universidade de São Paulo; 2007.
[5] Brasselet JP. An Introduction to Characteristic Classes. Rio de Janeiro: IMPA; 2011.
[6] Martins EBC. Obstruction theory, characteristic classes and applications [Dissertação (Mestrado em Matemática)]. São Paulo: Universidade de São Paulo; 2022.
[7] Munkres JR. Elements of algebraic topology. CRC press; 2018.
[8] Alexander JW. A proof of the invariance of certain constants of analysis situs. Transactions of the American Mathematical Society. 1915;16(2):148-54.
[9] Hatcher A. Algebraic Topology. Cambridge: Cambridge University Press; 2002.
[10] Brasselet JP, Thuy NTB. Teorema de Poincaré-Hopf. CQD-Revista Eletrônica Paulista de Matemática. 2019.
[11] Sullivan D. Combinatorial invariants of analytic spaces. In: Proceedings of Liverpool Singularities—Symposium I. Springer; 2006. p. 165-77.
[12] Brasselet JP. Characteristic Classes and Singular Varieties. School on Singularities in Geometry, Topology, Foliations and Dynamics; 2002.
[13] Goresky M, MacPherson R. Stratified Morse Theory. In: Stratified Morse Theory. Springer; 1988. p. 3-22.
[14] Whitney H. Local Properties of Analytic Varieties. Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse. 1965:496-549.
[15] Whitney H. Tangents to an Analytic Variety. Annals of Mathematics. 1965:496-549.
[16] Brasselet JP, Lê DT, Seade J. Euler obstruction and indices of vector fields. Topology. 2000;39(6):1193-208.
[17] Brasselet JP, Grulha Jr NG, Nguyen TTB. Local Euler Obstruction, Old and New III. Journal of Singularities. 2022;25:90-122.
[18] Brasselet JP, Massey D, Parameswaran A, Seade J. Euler obstruction and defects of functions on singular varieties. Journal of the London Mathematical Society. 2004;70(1):59-76.
[19] Seade J, Tibar M, Verjovsky A. Milnor numbers and Euler obstruction. Bulletin of the Brazilian Mathematical Society. 2005;36:275-83.
[20] Ament D, Nuño-Ballesteros J, Oréfice-Okamoto B, Tomazella J. The Euler obstruction of a function on a determinantal variety and on a curve. Bulletin of the Brazilian Mathematical Society, New Series. 2016;47(3):955-70.
[21] Decker W, Greuel GM, Pfister G, Schönemann H. SINGULAR 4-4-0 — A computer algebra system for polynomial computations; 2024. http://www.singular.uni-kl.de.
[22] Dutertre N, Grulha Jr NG. Lê–Greuel type formula for the Euler obstruction and applications. Advances in Mathematics. 2014;251:127-46.
[23] Brasselet JP, Seade J, Suwa T. Vector Fields on Singular Varieties. Springer Science & Business Media; 2009.
[24] Ebeling W, Gusein-Zade SM. Chern obstructions for collections of 1-forms on singular varieties. In: Singularity Theory: Dedicated to Jean-Paul Brasselet on His 60th Birthday. World Scientific; 2007. p. 557-64.
[25] Brasselet JP, Grulha Jr NG, Ruas MAS. The Euler obstruction and the Chern obstruction. Bulletin of the London Mathematical Society. 2010;42(6):1035-43.
[26] Grulha Jr NG, Ruiz CM, Santana H. The geometrical information encoded by the Euler obstruction of a map. International Journal of Mathematics. 2022;33(04):2250029.
[27] Arbarello E, Cornalba M, Griffiths PA, Harris J. Geometry of Algebraic Curves. New York: Springer-Verlag; 2011.
[28] Bonnard B, Faugère JC, Jacquemard A, Safey El Din M, Verron T. Determinantal sets, singularities and application to optimal control in medical imagery. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation; 2016. p.
103-10.
[29] Jockers H, Kumar V, Lapan JM, Morrison DR, Romo M. Nonabelian 2D Gauge theories for determinantal Calabi-Yau varieties. Journal of High Energy Physics. 2012;2012(11):1-47.
[30] Gusein-Zade SM, Ebeling W. On indices of 1-forms on determinantal singularities. Proceedings of the Steklov Institute of Mathematics. 2009;267(1):113-24.
[31] Pereira MdS. Variedades determinantais e singularidades de matrizes [Tese (Doutorado em Matemática)]. São Paulo: Universidade de São Paulo; 2010.
[32] Gaffney T, Grulha Jr NG, Ruas MAS. The Local Euler Obstruction and Topology of the Stabilization of Associated Determinantal Varieties. Mathematische Zeitschrift. 2019;291(3):905-30.
[33] Damon J, Pike B. Solvable Groups, Free Divisors and Nonisolated Matrix Singularities II: Vanishing Topology. Geometry & Topology. 2014;18(2):911-62.
[34] de Omena R, Grulha Jr NG, Pereira M. From Milnor Number to the Euler Obstruction of a Map on Isolated Determinantal Singularities. Manuscripta Mathematica. 2024:1-17.
[35] Gaffney T. Polar multiplicities and equisingularity of map germs. Topology. 1993;32(1):185-223.
[36] de Omena R. Do Número de Milnor à Obstrução de Euler de uma Aplicação em Singularidades Determinantais [Tese (Doutorado em Matemática)]. São Paulo: Universidade de São Paulo; 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Raphael de Omena Marinho

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors may enter into separate contractual agreements for the non-exclusive distribution of the journal's published version of the work (for example, posting it in an institutional repository or publishing it in a book), with an acknowledgment of its initial publication in this journal.






