Counting the number of non-isomorphic top generalized local cohomology modules
DOI:
https://doi.org/10.14244/lajm.v1i01.4Keywords:
Local Cohomology, Attached primesAbstract
Let (R, m) be a commutative Noetherian local ring, a be a proper ideal of R and M and N be two finitely generated R-modules. In this paper, we give some results in order to count the number of non-isomorphic top generalized local cohomology modules, namely H_a^{d+n}(M,N), where dim N = n < \infty and pdim M = d < \infty. We prove that this number is equal to 2^{|Att_R(H_{m}^{d+n}(M,N))|}, when dim R=d+n and R is Cohen-Macaulay and complete with respect to the m-adic topology.
References
M. P. Brodmann and R. Y. Sharp, Local cohomology - an algebraic introduction with geometric applications, Cambridge University Press, 1998.
M. T. Dibaei and R. Jafari, Top local cohomology modules with specified attached primes, Algebra Colloq., 2008, 341-344.
K. Divaani-Aazar and A. Hajikarimi, Generalized Local Cohomology Modules and Homological Gorenstein Dimensions, Comm. Algebra, 2011, 2051-2067.
Y. Gu and L. Chu, Attached primes of the top generalized local cohomology modules, Bull. Aust. Math. Soc., 2009, 59-67.
J. Herzog, Komplexe Auflosungen und Dualitat in der lokalen Algebra, Habilitationsschrift, Universitat Regensburg,1970.
I. G. MacDonald, Secondary representations of modules over a commutative ring, Symposia Mat., 1973, 23-43.
H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Liliam Carsava Merighe
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors may enter into separate non-commercial contractual agreements for the non-exclusive distribution of the journal's published version of the work (for example, posting it in an institutional repository or publishing it in a book), with an acknowledgment of its initial publication in this journal.