An overview on real division algebras

Authors

  • Gabriel Longatto Clemente Universidade Federal de São Carlos - UFSCar

DOI:

https://doi.org/10.14244/lajm.v2i02.17

Keywords:

Real algebras, topological K-theory

Abstract

In this paper, we expose initial concepts of real division algebras, providing historical notes
on $\R$, $\C$, $\Ham$ and $\Oct$. This is done to emphasize the relevance of topological K-theory
through the Bott-Milnor-Kervaire Theorem, which is at the end. For completeness, we also present
two classical results about the main division algebras.

References

Atiyah M. K-theory. Boca Raton: CRC Press; 1967. 240 p.

Baez J C. The Octonions. Bulletin (New Series) of the American Mathematical Society. 2022;39(2): 145-205. DOI: https://doi.org/10.1090/S0273-0979-01-00934-X

Buchmann A. A Brief History of Quaternions and the Theory of Holomorphic Functions of Quaternionic Variables. ArXiv [Internet]. 2011. [cited 2022 Jun 13]; 1111:6088. Available from: https://arxiv.org/abs/1111.6088

Clemente GL. Ordinary and Twisted K-Theory [Thesis (Master’s degree)]. São Carlos: Universidade Federal de São Carlos; 2022 [cited 2022 Jun 10]. 436 p. Available from: https://repositorio.ufscar.br/handle/ufscar/15841

Hatcher A. Vector bundles and K-theory. [book on the internet]. 2017 [cited 2022 Jun 13]. 124 p. Available from: https://pi.math.cornell.edu/~hatcher/VBKT/VB.pdf

Hurwitz A. Über die Composition der quadratischen Formen von beliebig vielen Variabeln, Nachr. Ges. Wiss. Göttingen (1898) pp. 309-316. Available from: https://gdz.sub.uni-goettingen.de/download/pdf/PPN252457811_1898/LOG_0034.pdf

Merino O. A Short History of Complex Numbers. [paper on the internet]. 2006 [cited 2022 Jun 13]. 5 p. Available from: https://www.math.uri.edu/~merino/spring06/mth562/ShortHistoryComplexNumbers2006.pdf

Palais R.S. The Classification of Real Division Algebras. American Mathematical Monthly, 1968, 75:366-8. DOI: https://doi.org/10.2307/2313414

Sudbery A. Quaternionic Analysis. Math. Proc. Camb. Phil. Soc. 1979; 85:199-225. DOI: https://doi.org/10.1017/S0305004100055638

Weiss I. The Real Numbers - A Survey of Constructions. ArXiv [Internet]. 2015. [cited 2022 Jun 13]; 1506:03467. Available from: https://arxiv.org/abs/1506.03467,

Zorn M. Theorie der alternativen Ringe, Abh. Math. Sem. Univ. Hamburg 8 (1930), 123-147 p. DOI: https://doi.org/10.1007/BF02940993

Downloads

Published

09/12/2023

How to Cite

[1]
Longatto Clemente, G. 2023. An overview on real division algebras. Latin American Journal of Mathematics. 2, 02 (Sep. 2023), 43–67. DOI:https://doi.org/10.14244/lajm.v2i02.17.